Metamath Proof Explorer


Theorem permaxpr

Description: The Axiom of Pairing ax-pr holds in permutation models. Part of Exercise II.9.2 of Kunen2 p. 148. (Contributed by Eric Schmidt, 6-Nov-2025)

Ref Expression
Hypotheses permmodel.1 𝐹 : V –1-1-onto→ V
permmodel.2 𝑅 = ( 𝐹 ∘ E )
Assertion permaxpr 𝑧𝑤 ( ( 𝑤 = 𝑥𝑤 = 𝑦 ) → 𝑤 𝑅 𝑧 )

Proof

Step Hyp Ref Expression
1 permmodel.1 𝐹 : V –1-1-onto→ V
2 permmodel.2 𝑅 = ( 𝐹 ∘ E )
3 fvex ( 𝐹 ‘ { 𝑥 , 𝑦 } ) ∈ V
4 breq2 ( 𝑧 = ( 𝐹 ‘ { 𝑥 , 𝑦 } ) → ( 𝑤 𝑅 𝑧𝑤 𝑅 ( 𝐹 ‘ { 𝑥 , 𝑦 } ) ) )
5 4 imbi2d ( 𝑧 = ( 𝐹 ‘ { 𝑥 , 𝑦 } ) → ( ( ( 𝑤 = 𝑥𝑤 = 𝑦 ) → 𝑤 𝑅 𝑧 ) ↔ ( ( 𝑤 = 𝑥𝑤 = 𝑦 ) → 𝑤 𝑅 ( 𝐹 ‘ { 𝑥 , 𝑦 } ) ) ) )
6 5 albidv ( 𝑧 = ( 𝐹 ‘ { 𝑥 , 𝑦 } ) → ( ∀ 𝑤 ( ( 𝑤 = 𝑥𝑤 = 𝑦 ) → 𝑤 𝑅 𝑧 ) ↔ ∀ 𝑤 ( ( 𝑤 = 𝑥𝑤 = 𝑦 ) → 𝑤 𝑅 ( 𝐹 ‘ { 𝑥 , 𝑦 } ) ) ) )
7 vex 𝑤 ∈ V
8 prex { 𝑥 , 𝑦 } ∈ V
9 1 2 7 8 brpermmodelcnv ( 𝑤 𝑅 ( 𝐹 ‘ { 𝑥 , 𝑦 } ) ↔ 𝑤 ∈ { 𝑥 , 𝑦 } )
10 7 elpr ( 𝑤 ∈ { 𝑥 , 𝑦 } ↔ ( 𝑤 = 𝑥𝑤 = 𝑦 ) )
11 9 10 sylbbr ( ( 𝑤 = 𝑥𝑤 = 𝑦 ) → 𝑤 𝑅 ( 𝐹 ‘ { 𝑥 , 𝑦 } ) )
12 11 ax-gen 𝑤 ( ( 𝑤 = 𝑥𝑤 = 𝑦 ) → 𝑤 𝑅 ( 𝐹 ‘ { 𝑥 , 𝑦 } ) )
13 3 6 12 ceqsexv2d 𝑧𝑤 ( ( 𝑤 = 𝑥𝑤 = 𝑦 ) → 𝑤 𝑅 𝑧 )