| Step |
Hyp |
Ref |
Expression |
| 1 |
|
permmodel.1 |
⊢ 𝐹 : V –1-1-onto→ V |
| 2 |
|
permmodel.2 |
⊢ 𝑅 = ( ◡ 𝐹 ∘ E ) |
| 3 |
|
fvex |
⊢ ( ◡ 𝐹 ‘ { 𝑥 , 𝑦 } ) ∈ V |
| 4 |
|
breq2 |
⊢ ( 𝑧 = ( ◡ 𝐹 ‘ { 𝑥 , 𝑦 } ) → ( 𝑤 𝑅 𝑧 ↔ 𝑤 𝑅 ( ◡ 𝐹 ‘ { 𝑥 , 𝑦 } ) ) ) |
| 5 |
4
|
imbi2d |
⊢ ( 𝑧 = ( ◡ 𝐹 ‘ { 𝑥 , 𝑦 } ) → ( ( ( 𝑤 = 𝑥 ∨ 𝑤 = 𝑦 ) → 𝑤 𝑅 𝑧 ) ↔ ( ( 𝑤 = 𝑥 ∨ 𝑤 = 𝑦 ) → 𝑤 𝑅 ( ◡ 𝐹 ‘ { 𝑥 , 𝑦 } ) ) ) ) |
| 6 |
5
|
albidv |
⊢ ( 𝑧 = ( ◡ 𝐹 ‘ { 𝑥 , 𝑦 } ) → ( ∀ 𝑤 ( ( 𝑤 = 𝑥 ∨ 𝑤 = 𝑦 ) → 𝑤 𝑅 𝑧 ) ↔ ∀ 𝑤 ( ( 𝑤 = 𝑥 ∨ 𝑤 = 𝑦 ) → 𝑤 𝑅 ( ◡ 𝐹 ‘ { 𝑥 , 𝑦 } ) ) ) ) |
| 7 |
|
vex |
⊢ 𝑤 ∈ V |
| 8 |
|
prex |
⊢ { 𝑥 , 𝑦 } ∈ V |
| 9 |
1 2 7 8
|
brpermmodelcnv |
⊢ ( 𝑤 𝑅 ( ◡ 𝐹 ‘ { 𝑥 , 𝑦 } ) ↔ 𝑤 ∈ { 𝑥 , 𝑦 } ) |
| 10 |
7
|
elpr |
⊢ ( 𝑤 ∈ { 𝑥 , 𝑦 } ↔ ( 𝑤 = 𝑥 ∨ 𝑤 = 𝑦 ) ) |
| 11 |
9 10
|
sylbbr |
⊢ ( ( 𝑤 = 𝑥 ∨ 𝑤 = 𝑦 ) → 𝑤 𝑅 ( ◡ 𝐹 ‘ { 𝑥 , 𝑦 } ) ) |
| 12 |
11
|
ax-gen |
⊢ ∀ 𝑤 ( ( 𝑤 = 𝑥 ∨ 𝑤 = 𝑦 ) → 𝑤 𝑅 ( ◡ 𝐹 ‘ { 𝑥 , 𝑦 } ) ) |
| 13 |
3 6 12
|
ceqsexv2d |
⊢ ∃ 𝑧 ∀ 𝑤 ( ( 𝑤 = 𝑥 ∨ 𝑤 = 𝑦 ) → 𝑤 𝑅 𝑧 ) |