Metamath Proof Explorer


Theorem permaxun

Description: The Axiom of Union ax-un holds in permutation models. Part of Exercise II.9.2 of Kunen2 p. 148. (Contributed by Eric Schmidt, 6-Nov-2025)

Ref Expression
Hypotheses permmodel.1 𝐹 : V –1-1-onto→ V
permmodel.2 𝑅 = ( 𝐹 ∘ E )
Assertion permaxun 𝑦𝑧 ( ∃ 𝑤 ( 𝑧 𝑅 𝑤𝑤 𝑅 𝑥 ) → 𝑧 𝑅 𝑦 )

Proof

Step Hyp Ref Expression
1 permmodel.1 𝐹 : V –1-1-onto→ V
2 permmodel.2 𝑅 = ( 𝐹 ∘ E )
3 fvex ( 𝐹 ( 𝐹 “ ( 𝐹𝑥 ) ) ) ∈ V
4 breq2 ( 𝑦 = ( 𝐹 ( 𝐹 “ ( 𝐹𝑥 ) ) ) → ( 𝑧 𝑅 𝑦𝑧 𝑅 ( 𝐹 ( 𝐹 “ ( 𝐹𝑥 ) ) ) ) )
5 4 imbi2d ( 𝑦 = ( 𝐹 ( 𝐹 “ ( 𝐹𝑥 ) ) ) → ( ( ∃ 𝑤 ( 𝑧 𝑅 𝑤𝑤 𝑅 𝑥 ) → 𝑧 𝑅 𝑦 ) ↔ ( ∃ 𝑤 ( 𝑧 𝑅 𝑤𝑤 𝑅 𝑥 ) → 𝑧 𝑅 ( 𝐹 ( 𝐹 “ ( 𝐹𝑥 ) ) ) ) ) )
6 5 albidv ( 𝑦 = ( 𝐹 ( 𝐹 “ ( 𝐹𝑥 ) ) ) → ( ∀ 𝑧 ( ∃ 𝑤 ( 𝑧 𝑅 𝑤𝑤 𝑅 𝑥 ) → 𝑧 𝑅 𝑦 ) ↔ ∀ 𝑧 ( ∃ 𝑤 ( 𝑧 𝑅 𝑤𝑤 𝑅 𝑥 ) → 𝑧 𝑅 ( 𝐹 ( 𝐹 “ ( 𝐹𝑥 ) ) ) ) ) )
7 vex 𝑧 ∈ V
8 vex 𝑤 ∈ V
9 1 2 7 8 brpermmodel ( 𝑧 𝑅 𝑤𝑧 ∈ ( 𝐹𝑤 ) )
10 vex 𝑥 ∈ V
11 1 2 8 10 brpermmodel ( 𝑤 𝑅 𝑥𝑤 ∈ ( 𝐹𝑥 ) )
12 f1ofn ( 𝐹 : V –1-1-onto→ V → 𝐹 Fn V )
13 1 12 ax-mp 𝐹 Fn V
14 ssv ( 𝐹𝑥 ) ⊆ V
15 fnfvima ( ( 𝐹 Fn V ∧ ( 𝐹𝑥 ) ⊆ V ∧ 𝑤 ∈ ( 𝐹𝑥 ) ) → ( 𝐹𝑤 ) ∈ ( 𝐹 “ ( 𝐹𝑥 ) ) )
16 13 14 15 mp3an12 ( 𝑤 ∈ ( 𝐹𝑥 ) → ( 𝐹𝑤 ) ∈ ( 𝐹 “ ( 𝐹𝑥 ) ) )
17 elunii ( ( 𝑧 ∈ ( 𝐹𝑤 ) ∧ ( 𝐹𝑤 ) ∈ ( 𝐹 “ ( 𝐹𝑥 ) ) ) → 𝑧 ( 𝐹 “ ( 𝐹𝑥 ) ) )
18 16 17 sylan2 ( ( 𝑧 ∈ ( 𝐹𝑤 ) ∧ 𝑤 ∈ ( 𝐹𝑥 ) ) → 𝑧 ( 𝐹 “ ( 𝐹𝑥 ) ) )
19 9 11 18 syl2anb ( ( 𝑧 𝑅 𝑤𝑤 𝑅 𝑥 ) → 𝑧 ( 𝐹 “ ( 𝐹𝑥 ) ) )
20 f1ofun ( 𝐹 : V –1-1-onto→ V → Fun 𝐹 )
21 1 20 ax-mp Fun 𝐹
22 fvex ( 𝐹𝑥 ) ∈ V
23 22 funimaex ( Fun 𝐹 → ( 𝐹 “ ( 𝐹𝑥 ) ) ∈ V )
24 21 23 ax-mp ( 𝐹 “ ( 𝐹𝑥 ) ) ∈ V
25 24 uniex ( 𝐹 “ ( 𝐹𝑥 ) ) ∈ V
26 1 2 7 25 brpermmodelcnv ( 𝑧 𝑅 ( 𝐹 ( 𝐹 “ ( 𝐹𝑥 ) ) ) ↔ 𝑧 ( 𝐹 “ ( 𝐹𝑥 ) ) )
27 19 26 sylibr ( ( 𝑧 𝑅 𝑤𝑤 𝑅 𝑥 ) → 𝑧 𝑅 ( 𝐹 ( 𝐹 “ ( 𝐹𝑥 ) ) ) )
28 27 exlimiv ( ∃ 𝑤 ( 𝑧 𝑅 𝑤𝑤 𝑅 𝑥 ) → 𝑧 𝑅 ( 𝐹 ( 𝐹 “ ( 𝐹𝑥 ) ) ) )
29 28 ax-gen 𝑧 ( ∃ 𝑤 ( 𝑧 𝑅 𝑤𝑤 𝑅 𝑥 ) → 𝑧 𝑅 ( 𝐹 ( 𝐹 “ ( 𝐹𝑥 ) ) ) )
30 3 6 29 ceqsexv2d 𝑦𝑧 ( ∃ 𝑤 ( 𝑧 𝑅 𝑤𝑤 𝑅 𝑥 ) → 𝑧 𝑅 𝑦 )