| Step |
Hyp |
Ref |
Expression |
| 1 |
|
permmodel.1 |
⊢ 𝐹 : V –1-1-onto→ V |
| 2 |
|
permmodel.2 |
⊢ 𝑅 = ( ◡ 𝐹 ∘ E ) |
| 3 |
|
fvex |
⊢ ( ◡ 𝐹 ‘ ∪ ( 𝐹 “ ( 𝐹 ‘ 𝑥 ) ) ) ∈ V |
| 4 |
|
breq2 |
⊢ ( 𝑦 = ( ◡ 𝐹 ‘ ∪ ( 𝐹 “ ( 𝐹 ‘ 𝑥 ) ) ) → ( 𝑧 𝑅 𝑦 ↔ 𝑧 𝑅 ( ◡ 𝐹 ‘ ∪ ( 𝐹 “ ( 𝐹 ‘ 𝑥 ) ) ) ) ) |
| 5 |
4
|
imbi2d |
⊢ ( 𝑦 = ( ◡ 𝐹 ‘ ∪ ( 𝐹 “ ( 𝐹 ‘ 𝑥 ) ) ) → ( ( ∃ 𝑤 ( 𝑧 𝑅 𝑤 ∧ 𝑤 𝑅 𝑥 ) → 𝑧 𝑅 𝑦 ) ↔ ( ∃ 𝑤 ( 𝑧 𝑅 𝑤 ∧ 𝑤 𝑅 𝑥 ) → 𝑧 𝑅 ( ◡ 𝐹 ‘ ∪ ( 𝐹 “ ( 𝐹 ‘ 𝑥 ) ) ) ) ) ) |
| 6 |
5
|
albidv |
⊢ ( 𝑦 = ( ◡ 𝐹 ‘ ∪ ( 𝐹 “ ( 𝐹 ‘ 𝑥 ) ) ) → ( ∀ 𝑧 ( ∃ 𝑤 ( 𝑧 𝑅 𝑤 ∧ 𝑤 𝑅 𝑥 ) → 𝑧 𝑅 𝑦 ) ↔ ∀ 𝑧 ( ∃ 𝑤 ( 𝑧 𝑅 𝑤 ∧ 𝑤 𝑅 𝑥 ) → 𝑧 𝑅 ( ◡ 𝐹 ‘ ∪ ( 𝐹 “ ( 𝐹 ‘ 𝑥 ) ) ) ) ) ) |
| 7 |
|
vex |
⊢ 𝑧 ∈ V |
| 8 |
|
vex |
⊢ 𝑤 ∈ V |
| 9 |
1 2 7 8
|
brpermmodel |
⊢ ( 𝑧 𝑅 𝑤 ↔ 𝑧 ∈ ( 𝐹 ‘ 𝑤 ) ) |
| 10 |
|
vex |
⊢ 𝑥 ∈ V |
| 11 |
1 2 8 10
|
brpermmodel |
⊢ ( 𝑤 𝑅 𝑥 ↔ 𝑤 ∈ ( 𝐹 ‘ 𝑥 ) ) |
| 12 |
|
f1ofn |
⊢ ( 𝐹 : V –1-1-onto→ V → 𝐹 Fn V ) |
| 13 |
1 12
|
ax-mp |
⊢ 𝐹 Fn V |
| 14 |
|
ssv |
⊢ ( 𝐹 ‘ 𝑥 ) ⊆ V |
| 15 |
|
fnfvima |
⊢ ( ( 𝐹 Fn V ∧ ( 𝐹 ‘ 𝑥 ) ⊆ V ∧ 𝑤 ∈ ( 𝐹 ‘ 𝑥 ) ) → ( 𝐹 ‘ 𝑤 ) ∈ ( 𝐹 “ ( 𝐹 ‘ 𝑥 ) ) ) |
| 16 |
13 14 15
|
mp3an12 |
⊢ ( 𝑤 ∈ ( 𝐹 ‘ 𝑥 ) → ( 𝐹 ‘ 𝑤 ) ∈ ( 𝐹 “ ( 𝐹 ‘ 𝑥 ) ) ) |
| 17 |
|
elunii |
⊢ ( ( 𝑧 ∈ ( 𝐹 ‘ 𝑤 ) ∧ ( 𝐹 ‘ 𝑤 ) ∈ ( 𝐹 “ ( 𝐹 ‘ 𝑥 ) ) ) → 𝑧 ∈ ∪ ( 𝐹 “ ( 𝐹 ‘ 𝑥 ) ) ) |
| 18 |
16 17
|
sylan2 |
⊢ ( ( 𝑧 ∈ ( 𝐹 ‘ 𝑤 ) ∧ 𝑤 ∈ ( 𝐹 ‘ 𝑥 ) ) → 𝑧 ∈ ∪ ( 𝐹 “ ( 𝐹 ‘ 𝑥 ) ) ) |
| 19 |
9 11 18
|
syl2anb |
⊢ ( ( 𝑧 𝑅 𝑤 ∧ 𝑤 𝑅 𝑥 ) → 𝑧 ∈ ∪ ( 𝐹 “ ( 𝐹 ‘ 𝑥 ) ) ) |
| 20 |
|
f1ofun |
⊢ ( 𝐹 : V –1-1-onto→ V → Fun 𝐹 ) |
| 21 |
1 20
|
ax-mp |
⊢ Fun 𝐹 |
| 22 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑥 ) ∈ V |
| 23 |
22
|
funimaex |
⊢ ( Fun 𝐹 → ( 𝐹 “ ( 𝐹 ‘ 𝑥 ) ) ∈ V ) |
| 24 |
21 23
|
ax-mp |
⊢ ( 𝐹 “ ( 𝐹 ‘ 𝑥 ) ) ∈ V |
| 25 |
24
|
uniex |
⊢ ∪ ( 𝐹 “ ( 𝐹 ‘ 𝑥 ) ) ∈ V |
| 26 |
1 2 7 25
|
brpermmodelcnv |
⊢ ( 𝑧 𝑅 ( ◡ 𝐹 ‘ ∪ ( 𝐹 “ ( 𝐹 ‘ 𝑥 ) ) ) ↔ 𝑧 ∈ ∪ ( 𝐹 “ ( 𝐹 ‘ 𝑥 ) ) ) |
| 27 |
19 26
|
sylibr |
⊢ ( ( 𝑧 𝑅 𝑤 ∧ 𝑤 𝑅 𝑥 ) → 𝑧 𝑅 ( ◡ 𝐹 ‘ ∪ ( 𝐹 “ ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 28 |
27
|
exlimiv |
⊢ ( ∃ 𝑤 ( 𝑧 𝑅 𝑤 ∧ 𝑤 𝑅 𝑥 ) → 𝑧 𝑅 ( ◡ 𝐹 ‘ ∪ ( 𝐹 “ ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 29 |
28
|
ax-gen |
⊢ ∀ 𝑧 ( ∃ 𝑤 ( 𝑧 𝑅 𝑤 ∧ 𝑤 𝑅 𝑥 ) → 𝑧 𝑅 ( ◡ 𝐹 ‘ ∪ ( 𝐹 “ ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 30 |
3 6 29
|
ceqsexv2d |
⊢ ∃ 𝑦 ∀ 𝑧 ( ∃ 𝑤 ( 𝑧 𝑅 𝑤 ∧ 𝑤 𝑅 𝑥 ) → 𝑧 𝑅 𝑦 ) |