| Step |
Hyp |
Ref |
Expression |
| 1 |
|
permmodel.1 |
|- F : _V -1-1-onto-> _V |
| 2 |
|
permmodel.2 |
|- R = ( `' F o. _E ) |
| 3 |
|
fvex |
|- ( `' F ` U. ( F " ( F ` x ) ) ) e. _V |
| 4 |
|
breq2 |
|- ( y = ( `' F ` U. ( F " ( F ` x ) ) ) -> ( z R y <-> z R ( `' F ` U. ( F " ( F ` x ) ) ) ) ) |
| 5 |
4
|
imbi2d |
|- ( y = ( `' F ` U. ( F " ( F ` x ) ) ) -> ( ( E. w ( z R w /\ w R x ) -> z R y ) <-> ( E. w ( z R w /\ w R x ) -> z R ( `' F ` U. ( F " ( F ` x ) ) ) ) ) ) |
| 6 |
5
|
albidv |
|- ( y = ( `' F ` U. ( F " ( F ` x ) ) ) -> ( A. z ( E. w ( z R w /\ w R x ) -> z R y ) <-> A. z ( E. w ( z R w /\ w R x ) -> z R ( `' F ` U. ( F " ( F ` x ) ) ) ) ) ) |
| 7 |
|
vex |
|- z e. _V |
| 8 |
|
vex |
|- w e. _V |
| 9 |
1 2 7 8
|
brpermmodel |
|- ( z R w <-> z e. ( F ` w ) ) |
| 10 |
|
vex |
|- x e. _V |
| 11 |
1 2 8 10
|
brpermmodel |
|- ( w R x <-> w e. ( F ` x ) ) |
| 12 |
|
f1ofn |
|- ( F : _V -1-1-onto-> _V -> F Fn _V ) |
| 13 |
1 12
|
ax-mp |
|- F Fn _V |
| 14 |
|
ssv |
|- ( F ` x ) C_ _V |
| 15 |
|
fnfvima |
|- ( ( F Fn _V /\ ( F ` x ) C_ _V /\ w e. ( F ` x ) ) -> ( F ` w ) e. ( F " ( F ` x ) ) ) |
| 16 |
13 14 15
|
mp3an12 |
|- ( w e. ( F ` x ) -> ( F ` w ) e. ( F " ( F ` x ) ) ) |
| 17 |
|
elunii |
|- ( ( z e. ( F ` w ) /\ ( F ` w ) e. ( F " ( F ` x ) ) ) -> z e. U. ( F " ( F ` x ) ) ) |
| 18 |
16 17
|
sylan2 |
|- ( ( z e. ( F ` w ) /\ w e. ( F ` x ) ) -> z e. U. ( F " ( F ` x ) ) ) |
| 19 |
9 11 18
|
syl2anb |
|- ( ( z R w /\ w R x ) -> z e. U. ( F " ( F ` x ) ) ) |
| 20 |
|
f1ofun |
|- ( F : _V -1-1-onto-> _V -> Fun F ) |
| 21 |
1 20
|
ax-mp |
|- Fun F |
| 22 |
|
fvex |
|- ( F ` x ) e. _V |
| 23 |
22
|
funimaex |
|- ( Fun F -> ( F " ( F ` x ) ) e. _V ) |
| 24 |
21 23
|
ax-mp |
|- ( F " ( F ` x ) ) e. _V |
| 25 |
24
|
uniex |
|- U. ( F " ( F ` x ) ) e. _V |
| 26 |
1 2 7 25
|
brpermmodelcnv |
|- ( z R ( `' F ` U. ( F " ( F ` x ) ) ) <-> z e. U. ( F " ( F ` x ) ) ) |
| 27 |
19 26
|
sylibr |
|- ( ( z R w /\ w R x ) -> z R ( `' F ` U. ( F " ( F ` x ) ) ) ) |
| 28 |
27
|
exlimiv |
|- ( E. w ( z R w /\ w R x ) -> z R ( `' F ` U. ( F " ( F ` x ) ) ) ) |
| 29 |
28
|
ax-gen |
|- A. z ( E. w ( z R w /\ w R x ) -> z R ( `' F ` U. ( F " ( F ` x ) ) ) ) |
| 30 |
3 6 29
|
ceqsexv2d |
|- E. y A. z ( E. w ( z R w /\ w R x ) -> z R y ) |