| Step |
Hyp |
Ref |
Expression |
| 1 |
|
permmodel.1 |
⊢ 𝐹 : V –1-1-onto→ V |
| 2 |
|
permmodel.2 |
⊢ 𝑅 = ( ◡ 𝐹 ∘ E ) |
| 3 |
|
permaxinf2lem.3 |
⊢ 𝑍 = ( rec ( ( 𝑣 ∈ V ↦ ( ◡ 𝐹 ‘ ( ( 𝐹 ‘ 𝑣 ) ∪ { 𝑣 } ) ) ) , ( ◡ 𝐹 ‘ ∅ ) ) “ ω ) |
| 4 |
|
fvex |
⊢ ( ◡ 𝐹 ‘ 𝑍 ) ∈ V |
| 5 |
|
breq2 |
⊢ ( 𝑥 = ( ◡ 𝐹 ‘ 𝑍 ) → ( 𝑦 𝑅 𝑥 ↔ 𝑦 𝑅 ( ◡ 𝐹 ‘ 𝑍 ) ) ) |
| 6 |
5
|
anbi1d |
⊢ ( 𝑥 = ( ◡ 𝐹 ‘ 𝑍 ) → ( ( 𝑦 𝑅 𝑥 ∧ ∀ 𝑧 ¬ 𝑧 𝑅 𝑦 ) ↔ ( 𝑦 𝑅 ( ◡ 𝐹 ‘ 𝑍 ) ∧ ∀ 𝑧 ¬ 𝑧 𝑅 𝑦 ) ) ) |
| 7 |
6
|
exbidv |
⊢ ( 𝑥 = ( ◡ 𝐹 ‘ 𝑍 ) → ( ∃ 𝑦 ( 𝑦 𝑅 𝑥 ∧ ∀ 𝑧 ¬ 𝑧 𝑅 𝑦 ) ↔ ∃ 𝑦 ( 𝑦 𝑅 ( ◡ 𝐹 ‘ 𝑍 ) ∧ ∀ 𝑧 ¬ 𝑧 𝑅 𝑦 ) ) ) |
| 8 |
|
breq2 |
⊢ ( 𝑥 = ( ◡ 𝐹 ‘ 𝑍 ) → ( 𝑧 𝑅 𝑥 ↔ 𝑧 𝑅 ( ◡ 𝐹 ‘ 𝑍 ) ) ) |
| 9 |
8
|
anbi1d |
⊢ ( 𝑥 = ( ◡ 𝐹 ‘ 𝑍 ) → ( ( 𝑧 𝑅 𝑥 ∧ ∀ 𝑤 ( 𝑤 𝑅 𝑧 ↔ ( 𝑤 𝑅 𝑦 ∨ 𝑤 = 𝑦 ) ) ) ↔ ( 𝑧 𝑅 ( ◡ 𝐹 ‘ 𝑍 ) ∧ ∀ 𝑤 ( 𝑤 𝑅 𝑧 ↔ ( 𝑤 𝑅 𝑦 ∨ 𝑤 = 𝑦 ) ) ) ) ) |
| 10 |
9
|
exbidv |
⊢ ( 𝑥 = ( ◡ 𝐹 ‘ 𝑍 ) → ( ∃ 𝑧 ( 𝑧 𝑅 𝑥 ∧ ∀ 𝑤 ( 𝑤 𝑅 𝑧 ↔ ( 𝑤 𝑅 𝑦 ∨ 𝑤 = 𝑦 ) ) ) ↔ ∃ 𝑧 ( 𝑧 𝑅 ( ◡ 𝐹 ‘ 𝑍 ) ∧ ∀ 𝑤 ( 𝑤 𝑅 𝑧 ↔ ( 𝑤 𝑅 𝑦 ∨ 𝑤 = 𝑦 ) ) ) ) ) |
| 11 |
5 10
|
imbi12d |
⊢ ( 𝑥 = ( ◡ 𝐹 ‘ 𝑍 ) → ( ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ( 𝑧 𝑅 𝑥 ∧ ∀ 𝑤 ( 𝑤 𝑅 𝑧 ↔ ( 𝑤 𝑅 𝑦 ∨ 𝑤 = 𝑦 ) ) ) ) ↔ ( 𝑦 𝑅 ( ◡ 𝐹 ‘ 𝑍 ) → ∃ 𝑧 ( 𝑧 𝑅 ( ◡ 𝐹 ‘ 𝑍 ) ∧ ∀ 𝑤 ( 𝑤 𝑅 𝑧 ↔ ( 𝑤 𝑅 𝑦 ∨ 𝑤 = 𝑦 ) ) ) ) ) ) |
| 12 |
11
|
albidv |
⊢ ( 𝑥 = ( ◡ 𝐹 ‘ 𝑍 ) → ( ∀ 𝑦 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ( 𝑧 𝑅 𝑥 ∧ ∀ 𝑤 ( 𝑤 𝑅 𝑧 ↔ ( 𝑤 𝑅 𝑦 ∨ 𝑤 = 𝑦 ) ) ) ) ↔ ∀ 𝑦 ( 𝑦 𝑅 ( ◡ 𝐹 ‘ 𝑍 ) → ∃ 𝑧 ( 𝑧 𝑅 ( ◡ 𝐹 ‘ 𝑍 ) ∧ ∀ 𝑤 ( 𝑤 𝑅 𝑧 ↔ ( 𝑤 𝑅 𝑦 ∨ 𝑤 = 𝑦 ) ) ) ) ) ) |
| 13 |
7 12
|
anbi12d |
⊢ ( 𝑥 = ( ◡ 𝐹 ‘ 𝑍 ) → ( ( ∃ 𝑦 ( 𝑦 𝑅 𝑥 ∧ ∀ 𝑧 ¬ 𝑧 𝑅 𝑦 ) ∧ ∀ 𝑦 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ( 𝑧 𝑅 𝑥 ∧ ∀ 𝑤 ( 𝑤 𝑅 𝑧 ↔ ( 𝑤 𝑅 𝑦 ∨ 𝑤 = 𝑦 ) ) ) ) ) ↔ ( ∃ 𝑦 ( 𝑦 𝑅 ( ◡ 𝐹 ‘ 𝑍 ) ∧ ∀ 𝑧 ¬ 𝑧 𝑅 𝑦 ) ∧ ∀ 𝑦 ( 𝑦 𝑅 ( ◡ 𝐹 ‘ 𝑍 ) → ∃ 𝑧 ( 𝑧 𝑅 ( ◡ 𝐹 ‘ 𝑍 ) ∧ ∀ 𝑤 ( 𝑤 𝑅 𝑧 ↔ ( 𝑤 𝑅 𝑦 ∨ 𝑤 = 𝑦 ) ) ) ) ) ) ) |
| 14 |
|
fvex |
⊢ ( ◡ 𝐹 ‘ ∅ ) ∈ V |
| 15 |
|
breq1 |
⊢ ( 𝑦 = ( ◡ 𝐹 ‘ ∅ ) → ( 𝑦 𝑅 ( ◡ 𝐹 ‘ 𝑍 ) ↔ ( ◡ 𝐹 ‘ ∅ ) 𝑅 ( ◡ 𝐹 ‘ 𝑍 ) ) ) |
| 16 |
|
breq2 |
⊢ ( 𝑦 = ( ◡ 𝐹 ‘ ∅ ) → ( 𝑧 𝑅 𝑦 ↔ 𝑧 𝑅 ( ◡ 𝐹 ‘ ∅ ) ) ) |
| 17 |
16
|
notbid |
⊢ ( 𝑦 = ( ◡ 𝐹 ‘ ∅ ) → ( ¬ 𝑧 𝑅 𝑦 ↔ ¬ 𝑧 𝑅 ( ◡ 𝐹 ‘ ∅ ) ) ) |
| 18 |
17
|
albidv |
⊢ ( 𝑦 = ( ◡ 𝐹 ‘ ∅ ) → ( ∀ 𝑧 ¬ 𝑧 𝑅 𝑦 ↔ ∀ 𝑧 ¬ 𝑧 𝑅 ( ◡ 𝐹 ‘ ∅ ) ) ) |
| 19 |
15 18
|
anbi12d |
⊢ ( 𝑦 = ( ◡ 𝐹 ‘ ∅ ) → ( ( 𝑦 𝑅 ( ◡ 𝐹 ‘ 𝑍 ) ∧ ∀ 𝑧 ¬ 𝑧 𝑅 𝑦 ) ↔ ( ( ◡ 𝐹 ‘ ∅ ) 𝑅 ( ◡ 𝐹 ‘ 𝑍 ) ∧ ∀ 𝑧 ¬ 𝑧 𝑅 ( ◡ 𝐹 ‘ ∅ ) ) ) ) |
| 20 |
|
orbitinit |
⊢ ( ( ◡ 𝐹 ‘ ∅ ) ∈ V → ( ◡ 𝐹 ‘ ∅ ) ∈ ( rec ( ( 𝑣 ∈ V ↦ ( ◡ 𝐹 ‘ ( ( 𝐹 ‘ 𝑣 ) ∪ { 𝑣 } ) ) ) , ( ◡ 𝐹 ‘ ∅ ) ) “ ω ) ) |
| 21 |
20 3
|
eleqtrrdi |
⊢ ( ( ◡ 𝐹 ‘ ∅ ) ∈ V → ( ◡ 𝐹 ‘ ∅ ) ∈ 𝑍 ) |
| 22 |
14 21
|
ax-mp |
⊢ ( ◡ 𝐹 ‘ ∅ ) ∈ 𝑍 |
| 23 |
|
orbitex |
⊢ ( rec ( ( 𝑣 ∈ V ↦ ( ◡ 𝐹 ‘ ( ( 𝐹 ‘ 𝑣 ) ∪ { 𝑣 } ) ) ) , ( ◡ 𝐹 ‘ ∅ ) ) “ ω ) ∈ V |
| 24 |
3 23
|
eqeltri |
⊢ 𝑍 ∈ V |
| 25 |
1 2 14 24
|
brpermmodelcnv |
⊢ ( ( ◡ 𝐹 ‘ ∅ ) 𝑅 ( ◡ 𝐹 ‘ 𝑍 ) ↔ ( ◡ 𝐹 ‘ ∅ ) ∈ 𝑍 ) |
| 26 |
22 25
|
mpbir |
⊢ ( ◡ 𝐹 ‘ ∅ ) 𝑅 ( ◡ 𝐹 ‘ 𝑍 ) |
| 27 |
|
noel |
⊢ ¬ 𝑧 ∈ ∅ |
| 28 |
|
vex |
⊢ 𝑧 ∈ V |
| 29 |
|
0ex |
⊢ ∅ ∈ V |
| 30 |
1 2 28 29
|
brpermmodelcnv |
⊢ ( 𝑧 𝑅 ( ◡ 𝐹 ‘ ∅ ) ↔ 𝑧 ∈ ∅ ) |
| 31 |
27 30
|
mtbir |
⊢ ¬ 𝑧 𝑅 ( ◡ 𝐹 ‘ ∅ ) |
| 32 |
31
|
ax-gen |
⊢ ∀ 𝑧 ¬ 𝑧 𝑅 ( ◡ 𝐹 ‘ ∅ ) |
| 33 |
26 32
|
pm3.2i |
⊢ ( ( ◡ 𝐹 ‘ ∅ ) 𝑅 ( ◡ 𝐹 ‘ 𝑍 ) ∧ ∀ 𝑧 ¬ 𝑧 𝑅 ( ◡ 𝐹 ‘ ∅ ) ) |
| 34 |
14 19 33
|
ceqsexv2d |
⊢ ∃ 𝑦 ( 𝑦 𝑅 ( ◡ 𝐹 ‘ 𝑍 ) ∧ ∀ 𝑧 ¬ 𝑧 𝑅 𝑦 ) |
| 35 |
|
fvex |
⊢ ( ◡ 𝐹 ‘ ( ( 𝐹 ‘ 𝑦 ) ∪ { 𝑦 } ) ) ∈ V |
| 36 |
|
nfcv |
⊢ Ⅎ 𝑣 𝑦 |
| 37 |
|
nfcv |
⊢ Ⅎ 𝑣 ( ◡ 𝐹 ‘ ( ( 𝐹 ‘ 𝑦 ) ∪ { 𝑦 } ) ) |
| 38 |
|
fveq2 |
⊢ ( 𝑣 = 𝑦 → ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ 𝑦 ) ) |
| 39 |
|
sneq |
⊢ ( 𝑣 = 𝑦 → { 𝑣 } = { 𝑦 } ) |
| 40 |
38 39
|
uneq12d |
⊢ ( 𝑣 = 𝑦 → ( ( 𝐹 ‘ 𝑣 ) ∪ { 𝑣 } ) = ( ( 𝐹 ‘ 𝑦 ) ∪ { 𝑦 } ) ) |
| 41 |
40
|
fveq2d |
⊢ ( 𝑣 = 𝑦 → ( ◡ 𝐹 ‘ ( ( 𝐹 ‘ 𝑣 ) ∪ { 𝑣 } ) ) = ( ◡ 𝐹 ‘ ( ( 𝐹 ‘ 𝑦 ) ∪ { 𝑦 } ) ) ) |
| 42 |
36 37 3 41
|
orbitclmpt |
⊢ ( ( 𝑦 ∈ 𝑍 ∧ ( ◡ 𝐹 ‘ ( ( 𝐹 ‘ 𝑦 ) ∪ { 𝑦 } ) ) ∈ V ) → ( ◡ 𝐹 ‘ ( ( 𝐹 ‘ 𝑦 ) ∪ { 𝑦 } ) ) ∈ 𝑍 ) |
| 43 |
35 42
|
mpan2 |
⊢ ( 𝑦 ∈ 𝑍 → ( ◡ 𝐹 ‘ ( ( 𝐹 ‘ 𝑦 ) ∪ { 𝑦 } ) ) ∈ 𝑍 ) |
| 44 |
|
vex |
⊢ 𝑦 ∈ V |
| 45 |
1 2 44 24
|
brpermmodelcnv |
⊢ ( 𝑦 𝑅 ( ◡ 𝐹 ‘ 𝑍 ) ↔ 𝑦 ∈ 𝑍 ) |
| 46 |
1 2 35 24
|
brpermmodelcnv |
⊢ ( ( ◡ 𝐹 ‘ ( ( 𝐹 ‘ 𝑦 ) ∪ { 𝑦 } ) ) 𝑅 ( ◡ 𝐹 ‘ 𝑍 ) ↔ ( ◡ 𝐹 ‘ ( ( 𝐹 ‘ 𝑦 ) ∪ { 𝑦 } ) ) ∈ 𝑍 ) |
| 47 |
43 45 46
|
3imtr4i |
⊢ ( 𝑦 𝑅 ( ◡ 𝐹 ‘ 𝑍 ) → ( ◡ 𝐹 ‘ ( ( 𝐹 ‘ 𝑦 ) ∪ { 𝑦 } ) ) 𝑅 ( ◡ 𝐹 ‘ 𝑍 ) ) |
| 48 |
|
vex |
⊢ 𝑤 ∈ V |
| 49 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑦 ) ∈ V |
| 50 |
|
vsnex |
⊢ { 𝑦 } ∈ V |
| 51 |
49 50
|
unex |
⊢ ( ( 𝐹 ‘ 𝑦 ) ∪ { 𝑦 } ) ∈ V |
| 52 |
1 2 48 51
|
brpermmodelcnv |
⊢ ( 𝑤 𝑅 ( ◡ 𝐹 ‘ ( ( 𝐹 ‘ 𝑦 ) ∪ { 𝑦 } ) ) ↔ 𝑤 ∈ ( ( 𝐹 ‘ 𝑦 ) ∪ { 𝑦 } ) ) |
| 53 |
|
elun |
⊢ ( 𝑤 ∈ ( ( 𝐹 ‘ 𝑦 ) ∪ { 𝑦 } ) ↔ ( 𝑤 ∈ ( 𝐹 ‘ 𝑦 ) ∨ 𝑤 ∈ { 𝑦 } ) ) |
| 54 |
1 2 48 44
|
brpermmodel |
⊢ ( 𝑤 𝑅 𝑦 ↔ 𝑤 ∈ ( 𝐹 ‘ 𝑦 ) ) |
| 55 |
54
|
bicomi |
⊢ ( 𝑤 ∈ ( 𝐹 ‘ 𝑦 ) ↔ 𝑤 𝑅 𝑦 ) |
| 56 |
|
velsn |
⊢ ( 𝑤 ∈ { 𝑦 } ↔ 𝑤 = 𝑦 ) |
| 57 |
55 56
|
orbi12i |
⊢ ( ( 𝑤 ∈ ( 𝐹 ‘ 𝑦 ) ∨ 𝑤 ∈ { 𝑦 } ) ↔ ( 𝑤 𝑅 𝑦 ∨ 𝑤 = 𝑦 ) ) |
| 58 |
52 53 57
|
3bitri |
⊢ ( 𝑤 𝑅 ( ◡ 𝐹 ‘ ( ( 𝐹 ‘ 𝑦 ) ∪ { 𝑦 } ) ) ↔ ( 𝑤 𝑅 𝑦 ∨ 𝑤 = 𝑦 ) ) |
| 59 |
58
|
ax-gen |
⊢ ∀ 𝑤 ( 𝑤 𝑅 ( ◡ 𝐹 ‘ ( ( 𝐹 ‘ 𝑦 ) ∪ { 𝑦 } ) ) ↔ ( 𝑤 𝑅 𝑦 ∨ 𝑤 = 𝑦 ) ) |
| 60 |
|
breq1 |
⊢ ( 𝑧 = ( ◡ 𝐹 ‘ ( ( 𝐹 ‘ 𝑦 ) ∪ { 𝑦 } ) ) → ( 𝑧 𝑅 ( ◡ 𝐹 ‘ 𝑍 ) ↔ ( ◡ 𝐹 ‘ ( ( 𝐹 ‘ 𝑦 ) ∪ { 𝑦 } ) ) 𝑅 ( ◡ 𝐹 ‘ 𝑍 ) ) ) |
| 61 |
|
breq2 |
⊢ ( 𝑧 = ( ◡ 𝐹 ‘ ( ( 𝐹 ‘ 𝑦 ) ∪ { 𝑦 } ) ) → ( 𝑤 𝑅 𝑧 ↔ 𝑤 𝑅 ( ◡ 𝐹 ‘ ( ( 𝐹 ‘ 𝑦 ) ∪ { 𝑦 } ) ) ) ) |
| 62 |
61
|
bibi1d |
⊢ ( 𝑧 = ( ◡ 𝐹 ‘ ( ( 𝐹 ‘ 𝑦 ) ∪ { 𝑦 } ) ) → ( ( 𝑤 𝑅 𝑧 ↔ ( 𝑤 𝑅 𝑦 ∨ 𝑤 = 𝑦 ) ) ↔ ( 𝑤 𝑅 ( ◡ 𝐹 ‘ ( ( 𝐹 ‘ 𝑦 ) ∪ { 𝑦 } ) ) ↔ ( 𝑤 𝑅 𝑦 ∨ 𝑤 = 𝑦 ) ) ) ) |
| 63 |
62
|
albidv |
⊢ ( 𝑧 = ( ◡ 𝐹 ‘ ( ( 𝐹 ‘ 𝑦 ) ∪ { 𝑦 } ) ) → ( ∀ 𝑤 ( 𝑤 𝑅 𝑧 ↔ ( 𝑤 𝑅 𝑦 ∨ 𝑤 = 𝑦 ) ) ↔ ∀ 𝑤 ( 𝑤 𝑅 ( ◡ 𝐹 ‘ ( ( 𝐹 ‘ 𝑦 ) ∪ { 𝑦 } ) ) ↔ ( 𝑤 𝑅 𝑦 ∨ 𝑤 = 𝑦 ) ) ) ) |
| 64 |
60 63
|
anbi12d |
⊢ ( 𝑧 = ( ◡ 𝐹 ‘ ( ( 𝐹 ‘ 𝑦 ) ∪ { 𝑦 } ) ) → ( ( 𝑧 𝑅 ( ◡ 𝐹 ‘ 𝑍 ) ∧ ∀ 𝑤 ( 𝑤 𝑅 𝑧 ↔ ( 𝑤 𝑅 𝑦 ∨ 𝑤 = 𝑦 ) ) ) ↔ ( ( ◡ 𝐹 ‘ ( ( 𝐹 ‘ 𝑦 ) ∪ { 𝑦 } ) ) 𝑅 ( ◡ 𝐹 ‘ 𝑍 ) ∧ ∀ 𝑤 ( 𝑤 𝑅 ( ◡ 𝐹 ‘ ( ( 𝐹 ‘ 𝑦 ) ∪ { 𝑦 } ) ) ↔ ( 𝑤 𝑅 𝑦 ∨ 𝑤 = 𝑦 ) ) ) ) ) |
| 65 |
35 64
|
spcev |
⊢ ( ( ( ◡ 𝐹 ‘ ( ( 𝐹 ‘ 𝑦 ) ∪ { 𝑦 } ) ) 𝑅 ( ◡ 𝐹 ‘ 𝑍 ) ∧ ∀ 𝑤 ( 𝑤 𝑅 ( ◡ 𝐹 ‘ ( ( 𝐹 ‘ 𝑦 ) ∪ { 𝑦 } ) ) ↔ ( 𝑤 𝑅 𝑦 ∨ 𝑤 = 𝑦 ) ) ) → ∃ 𝑧 ( 𝑧 𝑅 ( ◡ 𝐹 ‘ 𝑍 ) ∧ ∀ 𝑤 ( 𝑤 𝑅 𝑧 ↔ ( 𝑤 𝑅 𝑦 ∨ 𝑤 = 𝑦 ) ) ) ) |
| 66 |
47 59 65
|
sylancl |
⊢ ( 𝑦 𝑅 ( ◡ 𝐹 ‘ 𝑍 ) → ∃ 𝑧 ( 𝑧 𝑅 ( ◡ 𝐹 ‘ 𝑍 ) ∧ ∀ 𝑤 ( 𝑤 𝑅 𝑧 ↔ ( 𝑤 𝑅 𝑦 ∨ 𝑤 = 𝑦 ) ) ) ) |
| 67 |
66
|
ax-gen |
⊢ ∀ 𝑦 ( 𝑦 𝑅 ( ◡ 𝐹 ‘ 𝑍 ) → ∃ 𝑧 ( 𝑧 𝑅 ( ◡ 𝐹 ‘ 𝑍 ) ∧ ∀ 𝑤 ( 𝑤 𝑅 𝑧 ↔ ( 𝑤 𝑅 𝑦 ∨ 𝑤 = 𝑦 ) ) ) ) |
| 68 |
34 67
|
pm3.2i |
⊢ ( ∃ 𝑦 ( 𝑦 𝑅 ( ◡ 𝐹 ‘ 𝑍 ) ∧ ∀ 𝑧 ¬ 𝑧 𝑅 𝑦 ) ∧ ∀ 𝑦 ( 𝑦 𝑅 ( ◡ 𝐹 ‘ 𝑍 ) → ∃ 𝑧 ( 𝑧 𝑅 ( ◡ 𝐹 ‘ 𝑍 ) ∧ ∀ 𝑤 ( 𝑤 𝑅 𝑧 ↔ ( 𝑤 𝑅 𝑦 ∨ 𝑤 = 𝑦 ) ) ) ) ) |
| 69 |
4 13 68
|
ceqsexv2d |
⊢ ∃ 𝑥 ( ∃ 𝑦 ( 𝑦 𝑅 𝑥 ∧ ∀ 𝑧 ¬ 𝑧 𝑅 𝑦 ) ∧ ∀ 𝑦 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ( 𝑧 𝑅 𝑥 ∧ ∀ 𝑤 ( 𝑤 𝑅 𝑧 ↔ ( 𝑤 𝑅 𝑦 ∨ 𝑤 = 𝑦 ) ) ) ) ) |