Metamath Proof Explorer


Theorem orbitclmpt

Description: Version of orbitcl using maps-to notation. (Contributed by Eric Schmidt, 6-Nov-2025)

Ref Expression
Hypotheses orbitclmpt.1 𝑥 𝐵
orbitclmpt.2 𝑥 𝐷
orbitclmpt.3 𝑍 = ( rec ( ( 𝑥 ∈ V ↦ 𝐶 ) , 𝐴 ) “ ω )
orbitclmpt.4 ( 𝑥 = 𝐵𝐶 = 𝐷 )
Assertion orbitclmpt ( ( 𝐵𝑍𝐷𝑉 ) → 𝐷𝑍 )

Proof

Step Hyp Ref Expression
1 orbitclmpt.1 𝑥 𝐵
2 orbitclmpt.2 𝑥 𝐷
3 orbitclmpt.3 𝑍 = ( rec ( ( 𝑥 ∈ V ↦ 𝐶 ) , 𝐴 ) “ ω )
4 orbitclmpt.4 ( 𝑥 = 𝐵𝐶 = 𝐷 )
5 elex ( 𝐵𝑍𝐵 ∈ V )
6 eqid ( 𝑥 ∈ V ↦ 𝐶 ) = ( 𝑥 ∈ V ↦ 𝐶 )
7 1 2 4 6 fvmptf ( ( 𝐵 ∈ V ∧ 𝐷𝑉 ) → ( ( 𝑥 ∈ V ↦ 𝐶 ) ‘ 𝐵 ) = 𝐷 )
8 5 7 sylan ( ( 𝐵𝑍𝐷𝑉 ) → ( ( 𝑥 ∈ V ↦ 𝐶 ) ‘ 𝐵 ) = 𝐷 )
9 orbitcl ( 𝐵 ∈ ( rec ( ( 𝑥 ∈ V ↦ 𝐶 ) , 𝐴 ) “ ω ) → ( ( 𝑥 ∈ V ↦ 𝐶 ) ‘ 𝐵 ) ∈ ( rec ( ( 𝑥 ∈ V ↦ 𝐶 ) , 𝐴 ) “ ω ) )
10 3 eleq2i ( 𝐵𝑍𝐵 ∈ ( rec ( ( 𝑥 ∈ V ↦ 𝐶 ) , 𝐴 ) “ ω ) )
11 3 eleq2i ( ( ( 𝑥 ∈ V ↦ 𝐶 ) ‘ 𝐵 ) ∈ 𝑍 ↔ ( ( 𝑥 ∈ V ↦ 𝐶 ) ‘ 𝐵 ) ∈ ( rec ( ( 𝑥 ∈ V ↦ 𝐶 ) , 𝐴 ) “ ω ) )
12 9 10 11 3imtr4i ( 𝐵𝑍 → ( ( 𝑥 ∈ V ↦ 𝐶 ) ‘ 𝐵 ) ∈ 𝑍 )
13 12 adantr ( ( 𝐵𝑍𝐷𝑉 ) → ( ( 𝑥 ∈ V ↦ 𝐶 ) ‘ 𝐵 ) ∈ 𝑍 )
14 8 13 eqeltrrd ( ( 𝐵𝑍𝐷𝑉 ) → 𝐷𝑍 )