| Step |
Hyp |
Ref |
Expression |
| 1 |
|
orbitclmpt.1 |
⊢ Ⅎ 𝑥 𝐵 |
| 2 |
|
orbitclmpt.2 |
⊢ Ⅎ 𝑥 𝐷 |
| 3 |
|
orbitclmpt.3 |
⊢ 𝑍 = ( rec ( ( 𝑥 ∈ V ↦ 𝐶 ) , 𝐴 ) “ ω ) |
| 4 |
|
orbitclmpt.4 |
⊢ ( 𝑥 = 𝐵 → 𝐶 = 𝐷 ) |
| 5 |
|
elex |
⊢ ( 𝐵 ∈ 𝑍 → 𝐵 ∈ V ) |
| 6 |
|
eqid |
⊢ ( 𝑥 ∈ V ↦ 𝐶 ) = ( 𝑥 ∈ V ↦ 𝐶 ) |
| 7 |
1 2 4 6
|
fvmptf |
⊢ ( ( 𝐵 ∈ V ∧ 𝐷 ∈ 𝑉 ) → ( ( 𝑥 ∈ V ↦ 𝐶 ) ‘ 𝐵 ) = 𝐷 ) |
| 8 |
5 7
|
sylan |
⊢ ( ( 𝐵 ∈ 𝑍 ∧ 𝐷 ∈ 𝑉 ) → ( ( 𝑥 ∈ V ↦ 𝐶 ) ‘ 𝐵 ) = 𝐷 ) |
| 9 |
|
orbitcl |
⊢ ( 𝐵 ∈ ( rec ( ( 𝑥 ∈ V ↦ 𝐶 ) , 𝐴 ) “ ω ) → ( ( 𝑥 ∈ V ↦ 𝐶 ) ‘ 𝐵 ) ∈ ( rec ( ( 𝑥 ∈ V ↦ 𝐶 ) , 𝐴 ) “ ω ) ) |
| 10 |
3
|
eleq2i |
⊢ ( 𝐵 ∈ 𝑍 ↔ 𝐵 ∈ ( rec ( ( 𝑥 ∈ V ↦ 𝐶 ) , 𝐴 ) “ ω ) ) |
| 11 |
3
|
eleq2i |
⊢ ( ( ( 𝑥 ∈ V ↦ 𝐶 ) ‘ 𝐵 ) ∈ 𝑍 ↔ ( ( 𝑥 ∈ V ↦ 𝐶 ) ‘ 𝐵 ) ∈ ( rec ( ( 𝑥 ∈ V ↦ 𝐶 ) , 𝐴 ) “ ω ) ) |
| 12 |
9 10 11
|
3imtr4i |
⊢ ( 𝐵 ∈ 𝑍 → ( ( 𝑥 ∈ V ↦ 𝐶 ) ‘ 𝐵 ) ∈ 𝑍 ) |
| 13 |
12
|
adantr |
⊢ ( ( 𝐵 ∈ 𝑍 ∧ 𝐷 ∈ 𝑉 ) → ( ( 𝑥 ∈ V ↦ 𝐶 ) ‘ 𝐵 ) ∈ 𝑍 ) |
| 14 |
8 13
|
eqeltrrd |
⊢ ( ( 𝐵 ∈ 𝑍 ∧ 𝐷 ∈ 𝑉 ) → 𝐷 ∈ 𝑍 ) |