Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Eric Schmidt
Orbits
orbitclmpt
Next ⟩
Well-founded sets
Metamath Proof Explorer
Ascii
Unicode
Theorem
orbitclmpt
Description:
Version of
orbitcl
using maps-to notation.
(Contributed by
Eric Schmidt
, 6-Nov-2025)
Ref
Expression
Hypotheses
orbitclmpt.1
⊢
Ⅎ
_
x
B
orbitclmpt.2
⊢
Ⅎ
_
x
D
orbitclmpt.3
⊢
Z
=
rec
⁡
x
∈
V
⟼
C
A
ω
orbitclmpt.4
⊢
x
=
B
→
C
=
D
Assertion
orbitclmpt
⊢
B
∈
Z
∧
D
∈
V
→
D
∈
Z
Proof
Step
Hyp
Ref
Expression
1
orbitclmpt.1
⊢
Ⅎ
_
x
B
2
orbitclmpt.2
⊢
Ⅎ
_
x
D
3
orbitclmpt.3
⊢
Z
=
rec
⁡
x
∈
V
⟼
C
A
ω
4
orbitclmpt.4
⊢
x
=
B
→
C
=
D
5
elex
⊢
B
∈
Z
→
B
∈
V
6
eqid
⊢
x
∈
V
⟼
C
=
x
∈
V
⟼
C
7
1
2
4
6
fvmptf
⊢
B
∈
V
∧
D
∈
V
→
x
∈
V
⟼
C
⁡
B
=
D
8
5
7
sylan
⊢
B
∈
Z
∧
D
∈
V
→
x
∈
V
⟼
C
⁡
B
=
D
9
orbitcl
⊢
B
∈
rec
⁡
x
∈
V
⟼
C
A
ω
→
x
∈
V
⟼
C
⁡
B
∈
rec
⁡
x
∈
V
⟼
C
A
ω
10
3
eleq2i
⊢
B
∈
Z
↔
B
∈
rec
⁡
x
∈
V
⟼
C
A
ω
11
3
eleq2i
⊢
x
∈
V
⟼
C
⁡
B
∈
Z
↔
x
∈
V
⟼
C
⁡
B
∈
rec
⁡
x
∈
V
⟼
C
A
ω
12
9
10
11
3imtr4i
⊢
B
∈
Z
→
x
∈
V
⟼
C
⁡
B
∈
Z
13
12
adantr
⊢
B
∈
Z
∧
D
∈
V
→
x
∈
V
⟼
C
⁡
B
∈
Z
14
8
13
eqeltrrd
⊢
B
∈
Z
∧
D
∈
V
→
D
∈
Z