| Step |
Hyp |
Ref |
Expression |
| 1 |
|
orbitclmpt.1 |
|- F/_ x B |
| 2 |
|
orbitclmpt.2 |
|- F/_ x D |
| 3 |
|
orbitclmpt.3 |
|- Z = ( rec ( ( x e. _V |-> C ) , A ) " _om ) |
| 4 |
|
orbitclmpt.4 |
|- ( x = B -> C = D ) |
| 5 |
|
elex |
|- ( B e. Z -> B e. _V ) |
| 6 |
|
eqid |
|- ( x e. _V |-> C ) = ( x e. _V |-> C ) |
| 7 |
1 2 4 6
|
fvmptf |
|- ( ( B e. _V /\ D e. V ) -> ( ( x e. _V |-> C ) ` B ) = D ) |
| 8 |
5 7
|
sylan |
|- ( ( B e. Z /\ D e. V ) -> ( ( x e. _V |-> C ) ` B ) = D ) |
| 9 |
|
orbitcl |
|- ( B e. ( rec ( ( x e. _V |-> C ) , A ) " _om ) -> ( ( x e. _V |-> C ) ` B ) e. ( rec ( ( x e. _V |-> C ) , A ) " _om ) ) |
| 10 |
3
|
eleq2i |
|- ( B e. Z <-> B e. ( rec ( ( x e. _V |-> C ) , A ) " _om ) ) |
| 11 |
3
|
eleq2i |
|- ( ( ( x e. _V |-> C ) ` B ) e. Z <-> ( ( x e. _V |-> C ) ` B ) e. ( rec ( ( x e. _V |-> C ) , A ) " _om ) ) |
| 12 |
9 10 11
|
3imtr4i |
|- ( B e. Z -> ( ( x e. _V |-> C ) ` B ) e. Z ) |
| 13 |
12
|
adantr |
|- ( ( B e. Z /\ D e. V ) -> ( ( x e. _V |-> C ) ` B ) e. Z ) |
| 14 |
8 13
|
eqeltrrd |
|- ( ( B e. Z /\ D e. V ) -> D e. Z ) |