Metamath Proof Explorer


Theorem orbitclmpt

Description: Version of orbitcl using maps-to notation. (Contributed by Eric Schmidt, 6-Nov-2025)

Ref Expression
Hypotheses orbitclmpt.1
|- F/_ x B
orbitclmpt.2
|- F/_ x D
orbitclmpt.3
|- Z = ( rec ( ( x e. _V |-> C ) , A ) " _om )
orbitclmpt.4
|- ( x = B -> C = D )
Assertion orbitclmpt
|- ( ( B e. Z /\ D e. V ) -> D e. Z )

Proof

Step Hyp Ref Expression
1 orbitclmpt.1
 |-  F/_ x B
2 orbitclmpt.2
 |-  F/_ x D
3 orbitclmpt.3
 |-  Z = ( rec ( ( x e. _V |-> C ) , A ) " _om )
4 orbitclmpt.4
 |-  ( x = B -> C = D )
5 elex
 |-  ( B e. Z -> B e. _V )
6 eqid
 |-  ( x e. _V |-> C ) = ( x e. _V |-> C )
7 1 2 4 6 fvmptf
 |-  ( ( B e. _V /\ D e. V ) -> ( ( x e. _V |-> C ) ` B ) = D )
8 5 7 sylan
 |-  ( ( B e. Z /\ D e. V ) -> ( ( x e. _V |-> C ) ` B ) = D )
9 orbitcl
 |-  ( B e. ( rec ( ( x e. _V |-> C ) , A ) " _om ) -> ( ( x e. _V |-> C ) ` B ) e. ( rec ( ( x e. _V |-> C ) , A ) " _om ) )
10 3 eleq2i
 |-  ( B e. Z <-> B e. ( rec ( ( x e. _V |-> C ) , A ) " _om ) )
11 3 eleq2i
 |-  ( ( ( x e. _V |-> C ) ` B ) e. Z <-> ( ( x e. _V |-> C ) ` B ) e. ( rec ( ( x e. _V |-> C ) , A ) " _om ) )
12 9 10 11 3imtr4i
 |-  ( B e. Z -> ( ( x e. _V |-> C ) ` B ) e. Z )
13 12 adantr
 |-  ( ( B e. Z /\ D e. V ) -> ( ( x e. _V |-> C ) ` B ) e. Z )
14 8 13 eqeltrrd
 |-  ( ( B e. Z /\ D e. V ) -> D e. Z )