| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fvmptf.1 |  |-  F/_ x A | 
						
							| 2 |  | fvmptf.2 |  |-  F/_ x C | 
						
							| 3 |  | fvmptf.3 |  |-  ( x = A -> B = C ) | 
						
							| 4 |  | fvmptf.4 |  |-  F = ( x e. D |-> B ) | 
						
							| 5 | 2 | nfel1 |  |-  F/ x C e. _V | 
						
							| 6 |  | nfmpt1 |  |-  F/_ x ( x e. D |-> B ) | 
						
							| 7 | 4 6 | nfcxfr |  |-  F/_ x F | 
						
							| 8 | 7 1 | nffv |  |-  F/_ x ( F ` A ) | 
						
							| 9 | 8 2 | nfeq |  |-  F/ x ( F ` A ) = C | 
						
							| 10 | 5 9 | nfim |  |-  F/ x ( C e. _V -> ( F ` A ) = C ) | 
						
							| 11 | 3 | eleq1d |  |-  ( x = A -> ( B e. _V <-> C e. _V ) ) | 
						
							| 12 |  | fveq2 |  |-  ( x = A -> ( F ` x ) = ( F ` A ) ) | 
						
							| 13 | 12 3 | eqeq12d |  |-  ( x = A -> ( ( F ` x ) = B <-> ( F ` A ) = C ) ) | 
						
							| 14 | 11 13 | imbi12d |  |-  ( x = A -> ( ( B e. _V -> ( F ` x ) = B ) <-> ( C e. _V -> ( F ` A ) = C ) ) ) | 
						
							| 15 | 4 | fvmpt2 |  |-  ( ( x e. D /\ B e. _V ) -> ( F ` x ) = B ) | 
						
							| 16 | 15 | ex |  |-  ( x e. D -> ( B e. _V -> ( F ` x ) = B ) ) | 
						
							| 17 | 1 10 14 16 | vtoclgaf |  |-  ( A e. D -> ( C e. _V -> ( F ` A ) = C ) ) | 
						
							| 18 |  | elex |  |-  ( C e. V -> C e. _V ) | 
						
							| 19 | 17 18 | impel |  |-  ( ( A e. D /\ C e. V ) -> ( F ` A ) = C ) |