| Step |
Hyp |
Ref |
Expression |
| 1 |
|
frfnom |
|- ( rec ( F , A ) |` _om ) Fn _om |
| 2 |
|
fvelrnb |
|- ( ( rec ( F , A ) |` _om ) Fn _om -> ( B e. ran ( rec ( F , A ) |` _om ) <-> E. x e. _om ( ( rec ( F , A ) |` _om ) ` x ) = B ) ) |
| 3 |
1 2
|
ax-mp |
|- ( B e. ran ( rec ( F , A ) |` _om ) <-> E. x e. _om ( ( rec ( F , A ) |` _om ) ` x ) = B ) |
| 4 |
|
frsuc |
|- ( x e. _om -> ( ( rec ( F , A ) |` _om ) ` suc x ) = ( F ` ( ( rec ( F , A ) |` _om ) ` x ) ) ) |
| 5 |
|
peano2 |
|- ( x e. _om -> suc x e. _om ) |
| 6 |
|
fnfvelrn |
|- ( ( ( rec ( F , A ) |` _om ) Fn _om /\ suc x e. _om ) -> ( ( rec ( F , A ) |` _om ) ` suc x ) e. ran ( rec ( F , A ) |` _om ) ) |
| 7 |
1 5 6
|
sylancr |
|- ( x e. _om -> ( ( rec ( F , A ) |` _om ) ` suc x ) e. ran ( rec ( F , A ) |` _om ) ) |
| 8 |
4 7
|
eqeltrrd |
|- ( x e. _om -> ( F ` ( ( rec ( F , A ) |` _om ) ` x ) ) e. ran ( rec ( F , A ) |` _om ) ) |
| 9 |
|
fveq2 |
|- ( ( ( rec ( F , A ) |` _om ) ` x ) = B -> ( F ` ( ( rec ( F , A ) |` _om ) ` x ) ) = ( F ` B ) ) |
| 10 |
9
|
eleq1d |
|- ( ( ( rec ( F , A ) |` _om ) ` x ) = B -> ( ( F ` ( ( rec ( F , A ) |` _om ) ` x ) ) e. ran ( rec ( F , A ) |` _om ) <-> ( F ` B ) e. ran ( rec ( F , A ) |` _om ) ) ) |
| 11 |
8 10
|
syl5ibcom |
|- ( x e. _om -> ( ( ( rec ( F , A ) |` _om ) ` x ) = B -> ( F ` B ) e. ran ( rec ( F , A ) |` _om ) ) ) |
| 12 |
11
|
rexlimiv |
|- ( E. x e. _om ( ( rec ( F , A ) |` _om ) ` x ) = B -> ( F ` B ) e. ran ( rec ( F , A ) |` _om ) ) |
| 13 |
3 12
|
sylbi |
|- ( B e. ran ( rec ( F , A ) |` _om ) -> ( F ` B ) e. ran ( rec ( F , A ) |` _om ) ) |
| 14 |
|
df-ima |
|- ( rec ( F , A ) " _om ) = ran ( rec ( F , A ) |` _om ) |
| 15 |
13 14
|
eleq2s |
|- ( B e. ( rec ( F , A ) " _om ) -> ( F ` B ) e. ran ( rec ( F , A ) |` _om ) ) |
| 16 |
15 14
|
eleqtrrdi |
|- ( B e. ( rec ( F , A ) " _om ) -> ( F ` B ) e. ( rec ( F , A ) " _om ) ) |