Metamath Proof Explorer


Theorem orbitcl

Description: The orbit under a function is closed under the function. (Contributed by Eric Schmidt, 6-Nov-2025)

Ref Expression
Assertion orbitcl ( 𝐵 ∈ ( rec ( 𝐹 , 𝐴 ) “ ω ) → ( 𝐹𝐵 ) ∈ ( rec ( 𝐹 , 𝐴 ) “ ω ) )

Proof

Step Hyp Ref Expression
1 frfnom ( rec ( 𝐹 , 𝐴 ) ↾ ω ) Fn ω
2 fvelrnb ( ( rec ( 𝐹 , 𝐴 ) ↾ ω ) Fn ω → ( 𝐵 ∈ ran ( rec ( 𝐹 , 𝐴 ) ↾ ω ) ↔ ∃ 𝑥 ∈ ω ( ( rec ( 𝐹 , 𝐴 ) ↾ ω ) ‘ 𝑥 ) = 𝐵 ) )
3 1 2 ax-mp ( 𝐵 ∈ ran ( rec ( 𝐹 , 𝐴 ) ↾ ω ) ↔ ∃ 𝑥 ∈ ω ( ( rec ( 𝐹 , 𝐴 ) ↾ ω ) ‘ 𝑥 ) = 𝐵 )
4 frsuc ( 𝑥 ∈ ω → ( ( rec ( 𝐹 , 𝐴 ) ↾ ω ) ‘ suc 𝑥 ) = ( 𝐹 ‘ ( ( rec ( 𝐹 , 𝐴 ) ↾ ω ) ‘ 𝑥 ) ) )
5 peano2 ( 𝑥 ∈ ω → suc 𝑥 ∈ ω )
6 fnfvelrn ( ( ( rec ( 𝐹 , 𝐴 ) ↾ ω ) Fn ω ∧ suc 𝑥 ∈ ω ) → ( ( rec ( 𝐹 , 𝐴 ) ↾ ω ) ‘ suc 𝑥 ) ∈ ran ( rec ( 𝐹 , 𝐴 ) ↾ ω ) )
7 1 5 6 sylancr ( 𝑥 ∈ ω → ( ( rec ( 𝐹 , 𝐴 ) ↾ ω ) ‘ suc 𝑥 ) ∈ ran ( rec ( 𝐹 , 𝐴 ) ↾ ω ) )
8 4 7 eqeltrrd ( 𝑥 ∈ ω → ( 𝐹 ‘ ( ( rec ( 𝐹 , 𝐴 ) ↾ ω ) ‘ 𝑥 ) ) ∈ ran ( rec ( 𝐹 , 𝐴 ) ↾ ω ) )
9 fveq2 ( ( ( rec ( 𝐹 , 𝐴 ) ↾ ω ) ‘ 𝑥 ) = 𝐵 → ( 𝐹 ‘ ( ( rec ( 𝐹 , 𝐴 ) ↾ ω ) ‘ 𝑥 ) ) = ( 𝐹𝐵 ) )
10 9 eleq1d ( ( ( rec ( 𝐹 , 𝐴 ) ↾ ω ) ‘ 𝑥 ) = 𝐵 → ( ( 𝐹 ‘ ( ( rec ( 𝐹 , 𝐴 ) ↾ ω ) ‘ 𝑥 ) ) ∈ ran ( rec ( 𝐹 , 𝐴 ) ↾ ω ) ↔ ( 𝐹𝐵 ) ∈ ran ( rec ( 𝐹 , 𝐴 ) ↾ ω ) ) )
11 8 10 syl5ibcom ( 𝑥 ∈ ω → ( ( ( rec ( 𝐹 , 𝐴 ) ↾ ω ) ‘ 𝑥 ) = 𝐵 → ( 𝐹𝐵 ) ∈ ran ( rec ( 𝐹 , 𝐴 ) ↾ ω ) ) )
12 11 rexlimiv ( ∃ 𝑥 ∈ ω ( ( rec ( 𝐹 , 𝐴 ) ↾ ω ) ‘ 𝑥 ) = 𝐵 → ( 𝐹𝐵 ) ∈ ran ( rec ( 𝐹 , 𝐴 ) ↾ ω ) )
13 3 12 sylbi ( 𝐵 ∈ ran ( rec ( 𝐹 , 𝐴 ) ↾ ω ) → ( 𝐹𝐵 ) ∈ ran ( rec ( 𝐹 , 𝐴 ) ↾ ω ) )
14 df-ima ( rec ( 𝐹 , 𝐴 ) “ ω ) = ran ( rec ( 𝐹 , 𝐴 ) ↾ ω )
15 13 14 eleq2s ( 𝐵 ∈ ( rec ( 𝐹 , 𝐴 ) “ ω ) → ( 𝐹𝐵 ) ∈ ran ( rec ( 𝐹 , 𝐴 ) ↾ ω ) )
16 15 14 eleqtrrdi ( 𝐵 ∈ ( rec ( 𝐹 , 𝐴 ) “ ω ) → ( 𝐹𝐵 ) ∈ ( rec ( 𝐹 , 𝐴 ) “ ω ) )