| Step |
Hyp |
Ref |
Expression |
| 1 |
|
frfnom |
⊢ ( rec ( 𝐹 , 𝐴 ) ↾ ω ) Fn ω |
| 2 |
|
fvelrnb |
⊢ ( ( rec ( 𝐹 , 𝐴 ) ↾ ω ) Fn ω → ( 𝐵 ∈ ran ( rec ( 𝐹 , 𝐴 ) ↾ ω ) ↔ ∃ 𝑥 ∈ ω ( ( rec ( 𝐹 , 𝐴 ) ↾ ω ) ‘ 𝑥 ) = 𝐵 ) ) |
| 3 |
1 2
|
ax-mp |
⊢ ( 𝐵 ∈ ran ( rec ( 𝐹 , 𝐴 ) ↾ ω ) ↔ ∃ 𝑥 ∈ ω ( ( rec ( 𝐹 , 𝐴 ) ↾ ω ) ‘ 𝑥 ) = 𝐵 ) |
| 4 |
|
frsuc |
⊢ ( 𝑥 ∈ ω → ( ( rec ( 𝐹 , 𝐴 ) ↾ ω ) ‘ suc 𝑥 ) = ( 𝐹 ‘ ( ( rec ( 𝐹 , 𝐴 ) ↾ ω ) ‘ 𝑥 ) ) ) |
| 5 |
|
peano2 |
⊢ ( 𝑥 ∈ ω → suc 𝑥 ∈ ω ) |
| 6 |
|
fnfvelrn |
⊢ ( ( ( rec ( 𝐹 , 𝐴 ) ↾ ω ) Fn ω ∧ suc 𝑥 ∈ ω ) → ( ( rec ( 𝐹 , 𝐴 ) ↾ ω ) ‘ suc 𝑥 ) ∈ ran ( rec ( 𝐹 , 𝐴 ) ↾ ω ) ) |
| 7 |
1 5 6
|
sylancr |
⊢ ( 𝑥 ∈ ω → ( ( rec ( 𝐹 , 𝐴 ) ↾ ω ) ‘ suc 𝑥 ) ∈ ran ( rec ( 𝐹 , 𝐴 ) ↾ ω ) ) |
| 8 |
4 7
|
eqeltrrd |
⊢ ( 𝑥 ∈ ω → ( 𝐹 ‘ ( ( rec ( 𝐹 , 𝐴 ) ↾ ω ) ‘ 𝑥 ) ) ∈ ran ( rec ( 𝐹 , 𝐴 ) ↾ ω ) ) |
| 9 |
|
fveq2 |
⊢ ( ( ( rec ( 𝐹 , 𝐴 ) ↾ ω ) ‘ 𝑥 ) = 𝐵 → ( 𝐹 ‘ ( ( rec ( 𝐹 , 𝐴 ) ↾ ω ) ‘ 𝑥 ) ) = ( 𝐹 ‘ 𝐵 ) ) |
| 10 |
9
|
eleq1d |
⊢ ( ( ( rec ( 𝐹 , 𝐴 ) ↾ ω ) ‘ 𝑥 ) = 𝐵 → ( ( 𝐹 ‘ ( ( rec ( 𝐹 , 𝐴 ) ↾ ω ) ‘ 𝑥 ) ) ∈ ran ( rec ( 𝐹 , 𝐴 ) ↾ ω ) ↔ ( 𝐹 ‘ 𝐵 ) ∈ ran ( rec ( 𝐹 , 𝐴 ) ↾ ω ) ) ) |
| 11 |
8 10
|
syl5ibcom |
⊢ ( 𝑥 ∈ ω → ( ( ( rec ( 𝐹 , 𝐴 ) ↾ ω ) ‘ 𝑥 ) = 𝐵 → ( 𝐹 ‘ 𝐵 ) ∈ ran ( rec ( 𝐹 , 𝐴 ) ↾ ω ) ) ) |
| 12 |
11
|
rexlimiv |
⊢ ( ∃ 𝑥 ∈ ω ( ( rec ( 𝐹 , 𝐴 ) ↾ ω ) ‘ 𝑥 ) = 𝐵 → ( 𝐹 ‘ 𝐵 ) ∈ ran ( rec ( 𝐹 , 𝐴 ) ↾ ω ) ) |
| 13 |
3 12
|
sylbi |
⊢ ( 𝐵 ∈ ran ( rec ( 𝐹 , 𝐴 ) ↾ ω ) → ( 𝐹 ‘ 𝐵 ) ∈ ran ( rec ( 𝐹 , 𝐴 ) ↾ ω ) ) |
| 14 |
|
df-ima |
⊢ ( rec ( 𝐹 , 𝐴 ) “ ω ) = ran ( rec ( 𝐹 , 𝐴 ) ↾ ω ) |
| 15 |
13 14
|
eleq2s |
⊢ ( 𝐵 ∈ ( rec ( 𝐹 , 𝐴 ) “ ω ) → ( 𝐹 ‘ 𝐵 ) ∈ ran ( rec ( 𝐹 , 𝐴 ) ↾ ω ) ) |
| 16 |
15 14
|
eleqtrrdi |
⊢ ( 𝐵 ∈ ( rec ( 𝐹 , 𝐴 ) “ ω ) → ( 𝐹 ‘ 𝐵 ) ∈ ( rec ( 𝐹 , 𝐴 ) “ ω ) ) |