| Step |
Hyp |
Ref |
Expression |
| 1 |
|
permmodel.1 |
|- F : _V -1-1-onto-> _V |
| 2 |
|
permmodel.2 |
|- R = ( `' F o. _E ) |
| 3 |
|
fvex |
|- ( `' F ` { x , y } ) e. _V |
| 4 |
|
breq2 |
|- ( z = ( `' F ` { x , y } ) -> ( w R z <-> w R ( `' F ` { x , y } ) ) ) |
| 5 |
4
|
imbi2d |
|- ( z = ( `' F ` { x , y } ) -> ( ( ( w = x \/ w = y ) -> w R z ) <-> ( ( w = x \/ w = y ) -> w R ( `' F ` { x , y } ) ) ) ) |
| 6 |
5
|
albidv |
|- ( z = ( `' F ` { x , y } ) -> ( A. w ( ( w = x \/ w = y ) -> w R z ) <-> A. w ( ( w = x \/ w = y ) -> w R ( `' F ` { x , y } ) ) ) ) |
| 7 |
|
vex |
|- w e. _V |
| 8 |
|
prex |
|- { x , y } e. _V |
| 9 |
1 2 7 8
|
brpermmodelcnv |
|- ( w R ( `' F ` { x , y } ) <-> w e. { x , y } ) |
| 10 |
7
|
elpr |
|- ( w e. { x , y } <-> ( w = x \/ w = y ) ) |
| 11 |
9 10
|
sylbbr |
|- ( ( w = x \/ w = y ) -> w R ( `' F ` { x , y } ) ) |
| 12 |
11
|
ax-gen |
|- A. w ( ( w = x \/ w = y ) -> w R ( `' F ` { x , y } ) ) |
| 13 |
3 6 12
|
ceqsexv2d |
|- E. z A. w ( ( w = x \/ w = y ) -> w R z ) |