Metamath Proof Explorer


Theorem permaxpr

Description: The Axiom of Pairing ax-pr holds in permutation models. Part of Exercise II.9.2 of Kunen2 p. 148. (Contributed by Eric Schmidt, 6-Nov-2025)

Ref Expression
Hypotheses permmodel.1
|- F : _V -1-1-onto-> _V
permmodel.2
|- R = ( `' F o. _E )
Assertion permaxpr
|- E. z A. w ( ( w = x \/ w = y ) -> w R z )

Proof

Step Hyp Ref Expression
1 permmodel.1
 |-  F : _V -1-1-onto-> _V
2 permmodel.2
 |-  R = ( `' F o. _E )
3 fvex
 |-  ( `' F ` { x , y } ) e. _V
4 breq2
 |-  ( z = ( `' F ` { x , y } ) -> ( w R z <-> w R ( `' F ` { x , y } ) ) )
5 4 imbi2d
 |-  ( z = ( `' F ` { x , y } ) -> ( ( ( w = x \/ w = y ) -> w R z ) <-> ( ( w = x \/ w = y ) -> w R ( `' F ` { x , y } ) ) ) )
6 5 albidv
 |-  ( z = ( `' F ` { x , y } ) -> ( A. w ( ( w = x \/ w = y ) -> w R z ) <-> A. w ( ( w = x \/ w = y ) -> w R ( `' F ` { x , y } ) ) ) )
7 vex
 |-  w e. _V
8 prex
 |-  { x , y } e. _V
9 1 2 7 8 brpermmodelcnv
 |-  ( w R ( `' F ` { x , y } ) <-> w e. { x , y } )
10 7 elpr
 |-  ( w e. { x , y } <-> ( w = x \/ w = y ) )
11 9 10 sylbbr
 |-  ( ( w = x \/ w = y ) -> w R ( `' F ` { x , y } ) )
12 11 ax-gen
 |-  A. w ( ( w = x \/ w = y ) -> w R ( `' F ` { x , y } ) )
13 3 6 12 ceqsexv2d
 |-  E. z A. w ( ( w = x \/ w = y ) -> w R z )