Metamath Proof Explorer


Theorem permaxpow

Description: The Axiom of Power Sets ax-pow holds in permutation models. Part of Exercise II.9.2 of Kunen2 p. 148. (Contributed by Eric Schmidt, 6-Nov-2025)

Ref Expression
Hypotheses permmodel.1 F : V 1-1 onto V
permmodel.2 R = F -1 E
Assertion permaxpow y z w w R z w R x z R y

Proof

Step Hyp Ref Expression
1 permmodel.1 F : V 1-1 onto V
2 permmodel.2 R = F -1 E
3 fvex F -1 F -1 𝒫 F x V
4 breq2 y = F -1 F -1 𝒫 F x z R y z R F -1 F -1 𝒫 F x
5 4 imbi2d y = F -1 F -1 𝒫 F x w w R z w R x z R y w w R z w R x z R F -1 F -1 𝒫 F x
6 5 albidv y = F -1 F -1 𝒫 F x z w w R z w R x z R y z w w R z w R x z R F -1 F -1 𝒫 F x
7 vex z V
8 dff1o3 F : V 1-1 onto V F : V onto V Fun F -1
9 1 8 mpbi F : V onto V Fun F -1
10 9 simpri Fun F -1
11 fvex F x V
12 11 pwex 𝒫 F x V
13 12 funimaex Fun F -1 F -1 𝒫 F x V
14 10 13 ax-mp F -1 𝒫 F x V
15 1 2 7 14 brpermmodelcnv z R F -1 F -1 𝒫 F x z F -1 𝒫 F x
16 f1ofn F : V 1-1 onto V F Fn V
17 1 16 ax-mp F Fn V
18 elpreima F Fn V z F -1 𝒫 F x z V F z 𝒫 F x
19 17 18 ax-mp z F -1 𝒫 F x z V F z 𝒫 F x
20 7 19 mpbiran z F -1 𝒫 F x F z 𝒫 F x
21 15 20 bitri z R F -1 F -1 𝒫 F x F z 𝒫 F x
22 df-ss F z F x w w F z w F x
23 fvex F z V
24 23 elpw F z 𝒫 F x F z F x
25 vex w V
26 1 2 25 7 brpermmodel w R z w F z
27 vex x V
28 1 2 25 27 brpermmodel w R x w F x
29 26 28 imbi12i w R z w R x w F z w F x
30 29 albii w w R z w R x w w F z w F x
31 22 24 30 3bitr4i F z 𝒫 F x w w R z w R x
32 21 31 sylbbr w w R z w R x z R F -1 F -1 𝒫 F x
33 32 ax-gen z w w R z w R x z R F -1 F -1 𝒫 F x
34 3 6 33 ceqsexv2d y z w w R z w R x z R y