Metamath Proof Explorer


Theorem brpermmodelcnv

Description: Ordinary membership expressed in terms of the permutation model's membership relation. (Contributed by Eric Schmidt, 6-Nov-2025)

Ref Expression
Hypotheses permmodel.1 F : V 1-1 onto V
permmodel.2 R = F -1 E
brpermmodel.3 A V
brpermmodel.4 B V
Assertion brpermmodelcnv A R F -1 B A B

Proof

Step Hyp Ref Expression
1 permmodel.1 F : V 1-1 onto V
2 permmodel.2 R = F -1 E
3 brpermmodel.3 A V
4 brpermmodel.4 B V
5 fvex F -1 B V
6 1 2 3 5 brpermmodel A R F -1 B A F F -1 B
7 f1ocnvfv2 F : V 1-1 onto V B V F F -1 B = B
8 1 4 7 mp2an F F -1 B = B
9 8 eleq2i A F F -1 B A B
10 6 9 bitri A R F -1 B A B