Metamath Proof Explorer


Theorem ac8

Description: An Axiom of Choice equivalent. Given a family x of mutually disjoint nonempty sets, there exists a set y containing exactly one member from each set in the family. Theorem 6M(4) of Enderton p. 151. (Contributed by NM, 14-May-2004)

Ref Expression
Assertion ac8 ( ( ∀ 𝑧𝑥 𝑧 ≠ ∅ ∧ ∀ 𝑧𝑥𝑤𝑥 ( 𝑧𝑤 → ( 𝑧𝑤 ) = ∅ ) ) → ∃ 𝑦𝑧𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧𝑦 ) )

Proof

Step Hyp Ref Expression
1 dfac5 ( CHOICE ↔ ∀ 𝑥 ( ( ∀ 𝑧𝑥 𝑧 ≠ ∅ ∧ ∀ 𝑧𝑥𝑤𝑥 ( 𝑧𝑤 → ( 𝑧𝑤 ) = ∅ ) ) → ∃ 𝑦𝑧𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧𝑦 ) ) )
2 1 axaci ( ( ∀ 𝑧𝑥 𝑧 ≠ ∅ ∧ ∀ 𝑧𝑥𝑤𝑥 ( 𝑧𝑤 → ( 𝑧𝑤 ) = ∅ ) ) → ∃ 𝑦𝑧𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧𝑦 ) )