Metamath Proof Explorer


Theorem ac8

Description: An Axiom of Choice equivalent. Given a family x of mutually disjoint nonempty sets, there exists a set y containing exactly one member from each set in the family. Theorem 6M(4) of Enderton p. 151. (Contributed by NM, 14-May-2004)

Ref Expression
Assertion ac8
|- ( ( A. z e. x z =/= (/) /\ A. z e. x A. w e. x ( z =/= w -> ( z i^i w ) = (/) ) ) -> E. y A. z e. x E! v v e. ( z i^i y ) )

Proof

Step Hyp Ref Expression
1 dfac5
 |-  ( CHOICE <-> A. x ( ( A. z e. x z =/= (/) /\ A. z e. x A. w e. x ( z =/= w -> ( z i^i w ) = (/) ) ) -> E. y A. z e. x E! v v e. ( z i^i y ) ) )
2 1 axaci
 |-  ( ( A. z e. x z =/= (/) /\ A. z e. x A. w e. x ( z =/= w -> ( z i^i w ) = (/) ) ) -> E. y A. z e. x E! v v e. ( z i^i y ) )