Metamath Proof Explorer


Theorem ac9s

Description: An Axiom of Choice equivalent: the infinite Cartesian product of nonempty classes is nonempty. Axiom of Choice (second form) of Enderton p. 55 and its converse. This is a stronger version of the axiom in Enderton, with no existence requirement for the family of classes B ( x ) (achieved via the Collection Principle cp ). (Contributed by NM, 29-Sep-2006)

Ref Expression
Hypothesis ac9.1
|- A e. _V
Assertion ac9s
|- ( A. x e. A B =/= (/) <-> X_ x e. A B =/= (/) )

Proof

Step Hyp Ref Expression
1 ac9.1
 |-  A e. _V
2 1 ac6s4
 |-  ( A. x e. A B =/= (/) -> E. f ( f Fn A /\ A. x e. A ( f ` x ) e. B ) )
3 n0
 |-  ( X_ x e. A B =/= (/) <-> E. f f e. X_ x e. A B )
4 vex
 |-  f e. _V
5 4 elixp
 |-  ( f e. X_ x e. A B <-> ( f Fn A /\ A. x e. A ( f ` x ) e. B ) )
6 5 exbii
 |-  ( E. f f e. X_ x e. A B <-> E. f ( f Fn A /\ A. x e. A ( f ` x ) e. B ) )
7 3 6 bitr2i
 |-  ( E. f ( f Fn A /\ A. x e. A ( f ` x ) e. B ) <-> X_ x e. A B =/= (/) )
8 2 7 sylib
 |-  ( A. x e. A B =/= (/) -> X_ x e. A B =/= (/) )
9 ixpn0
 |-  ( X_ x e. A B =/= (/) -> A. x e. A B =/= (/) )
10 8 9 impbii
 |-  ( A. x e. A B =/= (/) <-> X_ x e. A B =/= (/) )