Metamath Proof Explorer


Theorem ac9s

Description: An Axiom of Choice equivalent: the infinite Cartesian product of nonempty classes is nonempty. Axiom of Choice (second form) of Enderton p. 55 and its converse. This is a stronger version of the axiom in Enderton, with no existence requirement for the family of classes B ( x ) (achieved via the Collection Principle cp ). (Contributed by NM, 29-Sep-2006)

Ref Expression
Hypothesis ac9.1 AV
Assertion ac9s xABxAB

Proof

Step Hyp Ref Expression
1 ac9.1 AV
2 1 ac6s4 xABffFnAxAfxB
3 n0 xABffxAB
4 vex fV
5 4 elixp fxABfFnAxAfxB
6 5 exbii ffxABffFnAxAfxB
7 3 6 bitr2i ffFnAxAfxBxAB
8 2 7 sylib xABxAB
9 ixpn0 xABxAB
10 8 9 impbii xABxAB