Metamath Proof Explorer


Theorem ixpn0

Description: The infinite Cartesian product of a family B ( x ) with an empty member is empty. The converse of this theorem is equivalent to the Axiom of Choice, see ac9 . (Contributed by Mario Carneiro, 22-Jun-2016)

Ref Expression
Assertion ixpn0 xABxAB

Proof

Step Hyp Ref Expression
1 n0 xABffxAB
2 df-ixp xAB=f|fFnx|xAxAfxB
3 2 eqabri fxABfFnx|xAxAfxB
4 ne0i fxBB
5 4 ralimi xAfxBxAB
6 3 5 simplbiim fxABxAB
7 6 exlimiv ffxABxAB
8 1 7 sylbi xABxAB