Metamath Proof Explorer


Theorem nregmodelf1o

Description: Define a permutation F used to produce a model in which ax-reg is false. The permutation swaps (/) and { (/) } and leaves the rest of V fixed. This is an example given after Exercise II.9.2 of Kunen2 p. 148. (Contributed by Eric Schmidt, 16-Nov-2025)

Ref Expression
Hypothesis nregmodel.1 𝐹 = ( ( I ↾ ( V ∖ { ∅ , { ∅ } } ) ) ∪ { ⟨ ∅ , { ∅ } ⟩ , ⟨ { ∅ } , ∅ ⟩ } )
Assertion nregmodelf1o 𝐹 : V –1-1-onto→ V

Proof

Step Hyp Ref Expression
1 nregmodel.1 𝐹 = ( ( I ↾ ( V ∖ { ∅ , { ∅ } } ) ) ∪ { ⟨ ∅ , { ∅ } ⟩ , ⟨ { ∅ } , ∅ ⟩ } )
2 f1ovi I : V –1-1-onto→ V
3 0ex ∅ ∈ V
4 snex { ∅ } ∈ V
5 f1ofvswap ( ( I : V –1-1-onto→ V ∧ ∅ ∈ V ∧ { ∅ } ∈ V ) → ( ( I ↾ ( V ∖ { ∅ , { ∅ } } ) ) ∪ { ⟨ ∅ , ( I ‘ { ∅ } ) ⟩ , ⟨ { ∅ } , ( I ‘ ∅ ) ⟩ } ) : V –1-1-onto→ V )
6 2 3 4 5 mp3an ( ( I ↾ ( V ∖ { ∅ , { ∅ } } ) ) ∪ { ⟨ ∅ , ( I ‘ { ∅ } ) ⟩ , ⟨ { ∅ } , ( I ‘ ∅ ) ⟩ } ) : V –1-1-onto→ V
7 fvi ( { ∅ } ∈ V → ( I ‘ { ∅ } ) = { ∅ } )
8 4 7 ax-mp ( I ‘ { ∅ } ) = { ∅ }
9 8 opeq2i ⟨ ∅ , ( I ‘ { ∅ } ) ⟩ = ⟨ ∅ , { ∅ } ⟩
10 fvi ( ∅ ∈ V → ( I ‘ ∅ ) = ∅ )
11 3 10 ax-mp ( I ‘ ∅ ) = ∅
12 11 opeq2i ⟨ { ∅ } , ( I ‘ ∅ ) ⟩ = ⟨ { ∅ } , ∅ ⟩
13 9 12 preq12i { ⟨ ∅ , ( I ‘ { ∅ } ) ⟩ , ⟨ { ∅ } , ( I ‘ ∅ ) ⟩ } = { ⟨ ∅ , { ∅ } ⟩ , ⟨ { ∅ } , ∅ ⟩ }
14 13 uneq2i ( ( I ↾ ( V ∖ { ∅ , { ∅ } } ) ) ∪ { ⟨ ∅ , ( I ‘ { ∅ } ) ⟩ , ⟨ { ∅ } , ( I ‘ ∅ ) ⟩ } ) = ( ( I ↾ ( V ∖ { ∅ , { ∅ } } ) ) ∪ { ⟨ ∅ , { ∅ } ⟩ , ⟨ { ∅ } , ∅ ⟩ } )
15 1 14 eqtr4i 𝐹 = ( ( I ↾ ( V ∖ { ∅ , { ∅ } } ) ) ∪ { ⟨ ∅ , ( I ‘ { ∅ } ) ⟩ , ⟨ { ∅ } , ( I ‘ ∅ ) ⟩ } )
16 f1oeq1 ( 𝐹 = ( ( I ↾ ( V ∖ { ∅ , { ∅ } } ) ) ∪ { ⟨ ∅ , ( I ‘ { ∅ } ) ⟩ , ⟨ { ∅ } , ( I ‘ ∅ ) ⟩ } ) → ( 𝐹 : V –1-1-onto→ V ↔ ( ( I ↾ ( V ∖ { ∅ , { ∅ } } ) ) ∪ { ⟨ ∅ , ( I ‘ { ∅ } ) ⟩ , ⟨ { ∅ } , ( I ‘ ∅ ) ⟩ } ) : V –1-1-onto→ V ) )
17 15 16 ax-mp ( 𝐹 : V –1-1-onto→ V ↔ ( ( I ↾ ( V ∖ { ∅ , { ∅ } } ) ) ∪ { ⟨ ∅ , ( I ‘ { ∅ } ) ⟩ , ⟨ { ∅ } , ( I ‘ ∅ ) ⟩ } ) : V –1-1-onto→ V )
18 6 17 mpbir 𝐹 : V –1-1-onto→ V