Metamath Proof Explorer


Theorem nregmodellem

Description: Lemma for nregmodel . (Contributed by Eric Schmidt, 16-Nov-2025)

Ref Expression
Hypotheses nregmodel.1 𝐹 = ( ( I ↾ ( V ∖ { ∅ , { ∅ } } ) ) ∪ { ⟨ ∅ , { ∅ } ⟩ , ⟨ { ∅ } , ∅ ⟩ } )
nregmodel.2 𝑅 = ( 𝐹 ∘ E )
Assertion nregmodellem ( 𝑥 𝑅 ∅ ↔ 𝑥 ∈ { ∅ } )

Proof

Step Hyp Ref Expression
1 nregmodel.1 𝐹 = ( ( I ↾ ( V ∖ { ∅ , { ∅ } } ) ) ∪ { ⟨ ∅ , { ∅ } ⟩ , ⟨ { ∅ } , ∅ ⟩ } )
2 nregmodel.2 𝑅 = ( 𝐹 ∘ E )
3 1 nregmodelf1o 𝐹 : V –1-1-onto→ V
4 vex 𝑥 ∈ V
5 0ex ∅ ∈ V
6 3 2 4 5 brpermmodel ( 𝑥 𝑅 ∅ ↔ 𝑥 ∈ ( 𝐹 ‘ ∅ ) )
7 f1ofun ( 𝐹 : V –1-1-onto→ V → Fun 𝐹 )
8 3 7 ax-mp Fun 𝐹
9 opex ⟨ ∅ , { ∅ } ⟩ ∈ V
10 9 prid1 ⟨ ∅ , { ∅ } ⟩ ∈ { ⟨ ∅ , { ∅ } ⟩ , ⟨ { ∅ } , ∅ ⟩ }
11 elun2 ( ⟨ ∅ , { ∅ } ⟩ ∈ { ⟨ ∅ , { ∅ } ⟩ , ⟨ { ∅ } , ∅ ⟩ } → ⟨ ∅ , { ∅ } ⟩ ∈ ( ( I ↾ ( V ∖ { ∅ , { ∅ } } ) ) ∪ { ⟨ ∅ , { ∅ } ⟩ , ⟨ { ∅ } , ∅ ⟩ } ) )
12 10 11 ax-mp ⟨ ∅ , { ∅ } ⟩ ∈ ( ( I ↾ ( V ∖ { ∅ , { ∅ } } ) ) ∪ { ⟨ ∅ , { ∅ } ⟩ , ⟨ { ∅ } , ∅ ⟩ } )
13 12 1 eleqtrri ⟨ ∅ , { ∅ } ⟩ ∈ 𝐹
14 funopfv ( Fun 𝐹 → ( ⟨ ∅ , { ∅ } ⟩ ∈ 𝐹 → ( 𝐹 ‘ ∅ ) = { ∅ } ) )
15 8 13 14 mp2 ( 𝐹 ‘ ∅ ) = { ∅ }
16 15 eleq2i ( 𝑥 ∈ ( 𝐹 ‘ ∅ ) ↔ 𝑥 ∈ { ∅ } )
17 6 16 bitri ( 𝑥 𝑅 ∅ ↔ 𝑥 ∈ { ∅ } )