| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nregmodel.1 |
⊢ 𝐹 = ( ( I ↾ ( V ∖ { ∅ , { ∅ } } ) ) ∪ { 〈 ∅ , { ∅ } 〉 , 〈 { ∅ } , ∅ 〉 } ) |
| 2 |
|
nregmodel.2 |
⊢ 𝑅 = ( ◡ 𝐹 ∘ E ) |
| 3 |
|
0ex |
⊢ ∅ ∈ V |
| 4 |
3
|
snid |
⊢ ∅ ∈ { ∅ } |
| 5 |
|
eleq1 |
⊢ ( 𝑦 = ∅ → ( 𝑦 ∈ { ∅ } ↔ ∅ ∈ { ∅ } ) ) |
| 6 |
3 5 4
|
ceqsexv2d |
⊢ ∃ 𝑦 𝑦 ∈ { ∅ } |
| 7 |
|
breq2 |
⊢ ( 𝑥 = ∅ → ( 𝑦 𝑅 𝑥 ↔ 𝑦 𝑅 ∅ ) ) |
| 8 |
1 2
|
nregmodellem |
⊢ ( 𝑦 𝑅 ∅ ↔ 𝑦 ∈ { ∅ } ) |
| 9 |
7 8
|
bitrdi |
⊢ ( 𝑥 = ∅ → ( 𝑦 𝑅 𝑥 ↔ 𝑦 ∈ { ∅ } ) ) |
| 10 |
9
|
exbidv |
⊢ ( 𝑥 = ∅ → ( ∃ 𝑦 𝑦 𝑅 𝑥 ↔ ∃ 𝑦 𝑦 ∈ { ∅ } ) ) |
| 11 |
|
breq2 |
⊢ ( 𝑥 = ∅ → ( 𝑧 𝑅 𝑥 ↔ 𝑧 𝑅 ∅ ) ) |
| 12 |
1 2
|
nregmodellem |
⊢ ( 𝑧 𝑅 ∅ ↔ 𝑧 ∈ { ∅ } ) |
| 13 |
11 12
|
bitrdi |
⊢ ( 𝑥 = ∅ → ( 𝑧 𝑅 𝑥 ↔ 𝑧 ∈ { ∅ } ) ) |
| 14 |
13
|
notbid |
⊢ ( 𝑥 = ∅ → ( ¬ 𝑧 𝑅 𝑥 ↔ ¬ 𝑧 ∈ { ∅ } ) ) |
| 15 |
14
|
imbi2d |
⊢ ( 𝑥 = ∅ → ( ( 𝑧 𝑅 𝑦 → ¬ 𝑧 𝑅 𝑥 ) ↔ ( 𝑧 𝑅 𝑦 → ¬ 𝑧 ∈ { ∅ } ) ) ) |
| 16 |
15
|
albidv |
⊢ ( 𝑥 = ∅ → ( ∀ 𝑧 ( 𝑧 𝑅 𝑦 → ¬ 𝑧 𝑅 𝑥 ) ↔ ∀ 𝑧 ( 𝑧 𝑅 𝑦 → ¬ 𝑧 ∈ { ∅ } ) ) ) |
| 17 |
9 16
|
anbi12d |
⊢ ( 𝑥 = ∅ → ( ( 𝑦 𝑅 𝑥 ∧ ∀ 𝑧 ( 𝑧 𝑅 𝑦 → ¬ 𝑧 𝑅 𝑥 ) ) ↔ ( 𝑦 ∈ { ∅ } ∧ ∀ 𝑧 ( 𝑧 𝑅 𝑦 → ¬ 𝑧 ∈ { ∅ } ) ) ) ) |
| 18 |
17
|
exbidv |
⊢ ( 𝑥 = ∅ → ( ∃ 𝑦 ( 𝑦 𝑅 𝑥 ∧ ∀ 𝑧 ( 𝑧 𝑅 𝑦 → ¬ 𝑧 𝑅 𝑥 ) ) ↔ ∃ 𝑦 ( 𝑦 ∈ { ∅ } ∧ ∀ 𝑧 ( 𝑧 𝑅 𝑦 → ¬ 𝑧 ∈ { ∅ } ) ) ) ) |
| 19 |
10 18
|
imbi12d |
⊢ ( 𝑥 = ∅ → ( ( ∃ 𝑦 𝑦 𝑅 𝑥 → ∃ 𝑦 ( 𝑦 𝑅 𝑥 ∧ ∀ 𝑧 ( 𝑧 𝑅 𝑦 → ¬ 𝑧 𝑅 𝑥 ) ) ) ↔ ( ∃ 𝑦 𝑦 ∈ { ∅ } → ∃ 𝑦 ( 𝑦 ∈ { ∅ } ∧ ∀ 𝑧 ( 𝑧 𝑅 𝑦 → ¬ 𝑧 ∈ { ∅ } ) ) ) ) ) |
| 20 |
3 19
|
spcv |
⊢ ( ∀ 𝑥 ( ∃ 𝑦 𝑦 𝑅 𝑥 → ∃ 𝑦 ( 𝑦 𝑅 𝑥 ∧ ∀ 𝑧 ( 𝑧 𝑅 𝑦 → ¬ 𝑧 𝑅 𝑥 ) ) ) → ( ∃ 𝑦 𝑦 ∈ { ∅ } → ∃ 𝑦 ( 𝑦 ∈ { ∅ } ∧ ∀ 𝑧 ( 𝑧 𝑅 𝑦 → ¬ 𝑧 ∈ { ∅ } ) ) ) ) |
| 21 |
6 20
|
mpi |
⊢ ( ∀ 𝑥 ( ∃ 𝑦 𝑦 𝑅 𝑥 → ∃ 𝑦 ( 𝑦 𝑅 𝑥 ∧ ∀ 𝑧 ( 𝑧 𝑅 𝑦 → ¬ 𝑧 𝑅 𝑥 ) ) ) → ∃ 𝑦 ( 𝑦 ∈ { ∅ } ∧ ∀ 𝑧 ( 𝑧 𝑅 𝑦 → ¬ 𝑧 ∈ { ∅ } ) ) ) |
| 22 |
|
df-ral |
⊢ ( ∀ 𝑧 ∈ { ∅ } ¬ 𝑧 ∈ { ∅ } ↔ ∀ 𝑧 ( 𝑧 ∈ { ∅ } → ¬ 𝑧 ∈ { ∅ } ) ) |
| 23 |
|
breq2 |
⊢ ( 𝑦 = ∅ → ( 𝑧 𝑅 𝑦 ↔ 𝑧 𝑅 ∅ ) ) |
| 24 |
23 12
|
bitrdi |
⊢ ( 𝑦 = ∅ → ( 𝑧 𝑅 𝑦 ↔ 𝑧 ∈ { ∅ } ) ) |
| 25 |
24
|
imbi1d |
⊢ ( 𝑦 = ∅ → ( ( 𝑧 𝑅 𝑦 → ¬ 𝑧 ∈ { ∅ } ) ↔ ( 𝑧 ∈ { ∅ } → ¬ 𝑧 ∈ { ∅ } ) ) ) |
| 26 |
25
|
albidv |
⊢ ( 𝑦 = ∅ → ( ∀ 𝑧 ( 𝑧 𝑅 𝑦 → ¬ 𝑧 ∈ { ∅ } ) ↔ ∀ 𝑧 ( 𝑧 ∈ { ∅ } → ¬ 𝑧 ∈ { ∅ } ) ) ) |
| 27 |
3 26
|
rexsn |
⊢ ( ∃ 𝑦 ∈ { ∅ } ∀ 𝑧 ( 𝑧 𝑅 𝑦 → ¬ 𝑧 ∈ { ∅ } ) ↔ ∀ 𝑧 ( 𝑧 ∈ { ∅ } → ¬ 𝑧 ∈ { ∅ } ) ) |
| 28 |
|
df-rex |
⊢ ( ∃ 𝑦 ∈ { ∅ } ∀ 𝑧 ( 𝑧 𝑅 𝑦 → ¬ 𝑧 ∈ { ∅ } ) ↔ ∃ 𝑦 ( 𝑦 ∈ { ∅ } ∧ ∀ 𝑧 ( 𝑧 𝑅 𝑦 → ¬ 𝑧 ∈ { ∅ } ) ) ) |
| 29 |
22 27 28
|
3bitr2ri |
⊢ ( ∃ 𝑦 ( 𝑦 ∈ { ∅ } ∧ ∀ 𝑧 ( 𝑧 𝑅 𝑦 → ¬ 𝑧 ∈ { ∅ } ) ) ↔ ∀ 𝑧 ∈ { ∅ } ¬ 𝑧 ∈ { ∅ } ) |
| 30 |
|
eleq1 |
⊢ ( 𝑧 = ∅ → ( 𝑧 ∈ { ∅ } ↔ ∅ ∈ { ∅ } ) ) |
| 31 |
30
|
notbid |
⊢ ( 𝑧 = ∅ → ( ¬ 𝑧 ∈ { ∅ } ↔ ¬ ∅ ∈ { ∅ } ) ) |
| 32 |
3 31
|
ralsn |
⊢ ( ∀ 𝑧 ∈ { ∅ } ¬ 𝑧 ∈ { ∅ } ↔ ¬ ∅ ∈ { ∅ } ) |
| 33 |
29 32
|
bitri |
⊢ ( ∃ 𝑦 ( 𝑦 ∈ { ∅ } ∧ ∀ 𝑧 ( 𝑧 𝑅 𝑦 → ¬ 𝑧 ∈ { ∅ } ) ) ↔ ¬ ∅ ∈ { ∅ } ) |
| 34 |
21 33
|
sylib |
⊢ ( ∀ 𝑥 ( ∃ 𝑦 𝑦 𝑅 𝑥 → ∃ 𝑦 ( 𝑦 𝑅 𝑥 ∧ ∀ 𝑧 ( 𝑧 𝑅 𝑦 → ¬ 𝑧 𝑅 𝑥 ) ) ) → ¬ ∅ ∈ { ∅ } ) |
| 35 |
4 34
|
mt2 |
⊢ ¬ ∀ 𝑥 ( ∃ 𝑦 𝑦 𝑅 𝑥 → ∃ 𝑦 ( 𝑦 𝑅 𝑥 ∧ ∀ 𝑧 ( 𝑧 𝑅 𝑦 → ¬ 𝑧 𝑅 𝑥 ) ) ) |