Description: The Axiom of Extensionality ax-ext is true in the permutation model defined from F . This theorem is an immediate consequence of the fact that ax-ext holds in all permutation models and is provided as an illustration. (Contributed by Eric Schmidt, 16-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nregmodel.1 | ⊢ 𝐹 = ( ( I ↾ ( V ∖ { ∅ , { ∅ } } ) ) ∪ { 〈 ∅ , { ∅ } 〉 , 〈 { ∅ } , ∅ 〉 } ) | |
| nregmodel.2 | ⊢ 𝑅 = ( ◡ 𝐹 ∘ E ) | ||
| Assertion | nregmodelaxext | ⊢ ( ∀ 𝑧 ( 𝑧 𝑅 𝑥 ↔ 𝑧 𝑅 𝑦 ) → 𝑥 = 𝑦 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nregmodel.1 | ⊢ 𝐹 = ( ( I ↾ ( V ∖ { ∅ , { ∅ } } ) ) ∪ { 〈 ∅ , { ∅ } 〉 , 〈 { ∅ } , ∅ 〉 } ) | |
| 2 | nregmodel.2 | ⊢ 𝑅 = ( ◡ 𝐹 ∘ E ) | |
| 3 | 1 | nregmodelf1o | ⊢ 𝐹 : V –1-1-onto→ V |
| 4 | 3 2 | permaxext | ⊢ ( ∀ 𝑧 ( 𝑧 𝑅 𝑥 ↔ 𝑧 𝑅 𝑦 ) → 𝑥 = 𝑦 ) |