Metamath Proof Explorer


Theorem nregmodelaxext

Description: The Axiom of Extensionality ax-ext is true in the permutation model defined from F . This theorem is an immediate consequence of the fact that ax-ext holds in all permutation models and is provided as an illustration. (Contributed by Eric Schmidt, 16-Nov-2025)

Ref Expression
Hypotheses nregmodel.1 𝐹 = ( ( I ↾ ( V ∖ { ∅ , { ∅ } } ) ) ∪ { ⟨ ∅ , { ∅ } ⟩ , ⟨ { ∅ } , ∅ ⟩ } )
nregmodel.2 𝑅 = ( 𝐹 ∘ E )
Assertion nregmodelaxext ( ∀ 𝑧 ( 𝑧 𝑅 𝑥𝑧 𝑅 𝑦 ) → 𝑥 = 𝑦 )

Proof

Step Hyp Ref Expression
1 nregmodel.1 𝐹 = ( ( I ↾ ( V ∖ { ∅ , { ∅ } } ) ) ∪ { ⟨ ∅ , { ∅ } ⟩ , ⟨ { ∅ } , ∅ ⟩ } )
2 nregmodel.2 𝑅 = ( 𝐹 ∘ E )
3 1 nregmodelf1o 𝐹 : V –1-1-onto→ V
4 3 2 permaxext ( ∀ 𝑧 ( 𝑧 𝑅 𝑥𝑧 𝑅 𝑦 ) → 𝑥 = 𝑦 )