Metamath Proof Explorer


Theorem nregmodelaxext

Description: The Axiom of Extensionality ax-ext is true in the permutation model defined from F . This theorem is an immediate consequence of the fact that ax-ext holds in all permutation models and is provided as an illustration. (Contributed by Eric Schmidt, 16-Nov-2025)

Ref Expression
Hypotheses nregmodel.1
|- F = ( ( _I |` ( _V \ { (/) , { (/) } } ) ) u. { <. (/) , { (/) } >. , <. { (/) } , (/) >. } )
nregmodel.2
|- R = ( `' F o. _E )
Assertion nregmodelaxext
|- ( A. z ( z R x <-> z R y ) -> x = y )

Proof

Step Hyp Ref Expression
1 nregmodel.1
 |-  F = ( ( _I |` ( _V \ { (/) , { (/) } } ) ) u. { <. (/) , { (/) } >. , <. { (/) } , (/) >. } )
2 nregmodel.2
 |-  R = ( `' F o. _E )
3 1 nregmodelf1o
 |-  F : _V -1-1-onto-> _V
4 3 2 permaxext
 |-  ( A. z ( z R x <-> z R y ) -> x = y )