Description: The Axiom of Extensionality ax-ext is true in the permutation model defined from F . This theorem is an immediate consequence of the fact that ax-ext holds in all permutation models and is provided as an illustration. (Contributed by Eric Schmidt, 16-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nregmodel.1 | |- F = ( ( _I |` ( _V \ { (/) , { (/) } } ) ) u. { <. (/) , { (/) } >. , <. { (/) } , (/) >. } ) |
|
| nregmodel.2 | |- R = ( `' F o. _E ) |
||
| Assertion | nregmodelaxext | |- ( A. z ( z R x <-> z R y ) -> x = y ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nregmodel.1 | |- F = ( ( _I |` ( _V \ { (/) , { (/) } } ) ) u. { <. (/) , { (/) } >. , <. { (/) } , (/) >. } ) |
|
| 2 | nregmodel.2 | |- R = ( `' F o. _E ) |
|
| 3 | 1 | nregmodelf1o | |- F : _V -1-1-onto-> _V |
| 4 | 3 2 | permaxext | |- ( A. z ( z R x <-> z R y ) -> x = y ) |