Metamath Proof Explorer


Theorem wfac8prim

Description: The class of well-founded sets W models the Axiom of Choice. Since the previous theorems show that all the ZF axioms hold in W , we may use any statement that ZF proves is equivalent to choice to prove this. We use ac8prim . Part of Corollary II.2.12 of Kunen2 p. 114. (Contributed by Eric Schmidt, 19-Oct-2025)

Ref Expression
Hypothesis wfax.1 𝑊 = ( 𝑅1 “ On )
Assertion wfac8prim 𝑥𝑊 ( ( ∀ 𝑧𝑊 ( 𝑧𝑥 → ∃ 𝑤𝑊 𝑤𝑧 ) ∧ ∀ 𝑧𝑊𝑤𝑊 ( ( 𝑧𝑥𝑤𝑥 ) → ( ¬ 𝑧 = 𝑤 → ∀ 𝑦𝑊 ( 𝑦𝑧 → ¬ 𝑦𝑤 ) ) ) ) → ∃ 𝑦𝑊𝑧𝑊 ( 𝑧𝑥 → ∃ 𝑤𝑊𝑣𝑊 ( ( 𝑣𝑧𝑣𝑦 ) ↔ 𝑣 = 𝑤 ) ) )

Proof

Step Hyp Ref Expression
1 wfax.1 𝑊 = ( 𝑅1 “ On )
2 trwf Tr ( 𝑅1 “ On )
3 treq ( 𝑊 = ( 𝑅1 “ On ) → ( Tr 𝑊 ↔ Tr ( 𝑅1 “ On ) ) )
4 1 3 ax-mp ( Tr 𝑊 ↔ Tr ( 𝑅1 “ On ) )
5 2 4 mpbir Tr 𝑊
6 ac8 ( ( ∀ 𝑧𝑥 𝑧 ≠ ∅ ∧ ∀ 𝑧𝑥𝑤𝑥 ( 𝑧𝑤 → ( 𝑧𝑤 ) = ∅ ) ) → ∃ 𝑡𝑧𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧𝑡 ) )
7 uniwf ( 𝑥 ( 𝑅1 “ On ) ↔ 𝑥 ( 𝑅1 “ On ) )
8 inss2 ( 𝑡 𝑥 ) ⊆ 𝑥
9 sswf ( ( 𝑥 ( 𝑅1 “ On ) ∧ ( 𝑡 𝑥 ) ⊆ 𝑥 ) → ( 𝑡 𝑥 ) ∈ ( 𝑅1 “ On ) )
10 8 9 mpan2 ( 𝑥 ( 𝑅1 “ On ) → ( 𝑡 𝑥 ) ∈ ( 𝑅1 “ On ) )
11 7 10 sylbi ( 𝑥 ( 𝑅1 “ On ) → ( 𝑡 𝑥 ) ∈ ( 𝑅1 “ On ) )
12 1 eleq2i ( 𝑥𝑊𝑥 ( 𝑅1 “ On ) )
13 1 eleq2i ( ( 𝑡 𝑥 ) ∈ 𝑊 ↔ ( 𝑡 𝑥 ) ∈ ( 𝑅1 “ On ) )
14 11 12 13 3imtr4i ( 𝑥𝑊 → ( 𝑡 𝑥 ) ∈ 𝑊 )
15 inss1 ( 𝑧𝑡 ) ⊆ 𝑧
16 elssuni ( 𝑧𝑥𝑧 𝑥 )
17 15 16 sstrid ( 𝑧𝑥 → ( 𝑧𝑡 ) ⊆ 𝑥 )
18 dfss ( ( 𝑧𝑡 ) ⊆ 𝑥 ↔ ( 𝑧𝑡 ) = ( ( 𝑧𝑡 ) ∩ 𝑥 ) )
19 17 18 sylib ( 𝑧𝑥 → ( 𝑧𝑡 ) = ( ( 𝑧𝑡 ) ∩ 𝑥 ) )
20 inass ( ( 𝑧𝑡 ) ∩ 𝑥 ) = ( 𝑧 ∩ ( 𝑡 𝑥 ) )
21 19 20 eqtrdi ( 𝑧𝑥 → ( 𝑧𝑡 ) = ( 𝑧 ∩ ( 𝑡 𝑥 ) ) )
22 21 eleq2d ( 𝑧𝑥 → ( 𝑣 ∈ ( 𝑧𝑡 ) ↔ 𝑣 ∈ ( 𝑧 ∩ ( 𝑡 𝑥 ) ) ) )
23 22 eubidv ( 𝑧𝑥 → ( ∃! 𝑣 𝑣 ∈ ( 𝑧𝑡 ) ↔ ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ ( 𝑡 𝑥 ) ) ) )
24 23 ralbiia ( ∀ 𝑧𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧𝑡 ) ↔ ∀ 𝑧𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ ( 𝑡 𝑥 ) ) )
25 ineq2 ( 𝑦 = ( 𝑡 𝑥 ) → ( 𝑧𝑦 ) = ( 𝑧 ∩ ( 𝑡 𝑥 ) ) )
26 25 eleq2d ( 𝑦 = ( 𝑡 𝑥 ) → ( 𝑣 ∈ ( 𝑧𝑦 ) ↔ 𝑣 ∈ ( 𝑧 ∩ ( 𝑡 𝑥 ) ) ) )
27 26 eubidv ( 𝑦 = ( 𝑡 𝑥 ) → ( ∃! 𝑣 𝑣 ∈ ( 𝑧𝑦 ) ↔ ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ ( 𝑡 𝑥 ) ) ) )
28 27 ralbidv ( 𝑦 = ( 𝑡 𝑥 ) → ( ∀ 𝑧𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧𝑦 ) ↔ ∀ 𝑧𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ ( 𝑡 𝑥 ) ) ) )
29 28 rspcev ( ( ( 𝑡 𝑥 ) ∈ 𝑊 ∧ ∀ 𝑧𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ ( 𝑡 𝑥 ) ) ) → ∃ 𝑦𝑊𝑧𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧𝑦 ) )
30 24 29 sylan2b ( ( ( 𝑡 𝑥 ) ∈ 𝑊 ∧ ∀ 𝑧𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧𝑡 ) ) → ∃ 𝑦𝑊𝑧𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧𝑦 ) )
31 14 30 sylan ( ( 𝑥𝑊 ∧ ∀ 𝑧𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧𝑡 ) ) → ∃ 𝑦𝑊𝑧𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧𝑦 ) )
32 31 ex ( 𝑥𝑊 → ( ∀ 𝑧𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧𝑡 ) → ∃ 𝑦𝑊𝑧𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧𝑦 ) ) )
33 32 exlimdv ( 𝑥𝑊 → ( ∃ 𝑡𝑧𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧𝑡 ) → ∃ 𝑦𝑊𝑧𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧𝑦 ) ) )
34 6 33 syl5 ( 𝑥𝑊 → ( ( ∀ 𝑧𝑥 𝑧 ≠ ∅ ∧ ∀ 𝑧𝑥𝑤𝑥 ( 𝑧𝑤 → ( 𝑧𝑤 ) = ∅ ) ) → ∃ 𝑦𝑊𝑧𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧𝑦 ) ) )
35 34 rgen 𝑥𝑊 ( ( ∀ 𝑧𝑥 𝑧 ≠ ∅ ∧ ∀ 𝑧𝑥𝑤𝑥 ( 𝑧𝑤 → ( 𝑧𝑤 ) = ∅ ) ) → ∃ 𝑦𝑊𝑧𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧𝑦 ) )
36 modelac8prim ( Tr 𝑊 → ( ∀ 𝑥𝑊 ( ( ∀ 𝑧𝑥 𝑧 ≠ ∅ ∧ ∀ 𝑧𝑥𝑤𝑥 ( 𝑧𝑤 → ( 𝑧𝑤 ) = ∅ ) ) → ∃ 𝑦𝑊𝑧𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧𝑦 ) ) ↔ ∀ 𝑥𝑊 ( ( ∀ 𝑧𝑊 ( 𝑧𝑥 → ∃ 𝑤𝑊 𝑤𝑧 ) ∧ ∀ 𝑧𝑊𝑤𝑊 ( ( 𝑧𝑥𝑤𝑥 ) → ( ¬ 𝑧 = 𝑤 → ∀ 𝑦𝑊 ( 𝑦𝑧 → ¬ 𝑦𝑤 ) ) ) ) → ∃ 𝑦𝑊𝑧𝑊 ( 𝑧𝑥 → ∃ 𝑤𝑊𝑣𝑊 ( ( 𝑣𝑧𝑣𝑦 ) ↔ 𝑣 = 𝑤 ) ) ) ) )
37 35 36 mpbii ( Tr 𝑊 → ∀ 𝑥𝑊 ( ( ∀ 𝑧𝑊 ( 𝑧𝑥 → ∃ 𝑤𝑊 𝑤𝑧 ) ∧ ∀ 𝑧𝑊𝑤𝑊 ( ( 𝑧𝑥𝑤𝑥 ) → ( ¬ 𝑧 = 𝑤 → ∀ 𝑦𝑊 ( 𝑦𝑧 → ¬ 𝑦𝑤 ) ) ) ) → ∃ 𝑦𝑊𝑧𝑊 ( 𝑧𝑥 → ∃ 𝑤𝑊𝑣𝑊 ( ( 𝑣𝑧𝑣𝑦 ) ↔ 𝑣 = 𝑤 ) ) ) )
38 5 37 ax-mp 𝑥𝑊 ( ( ∀ 𝑧𝑊 ( 𝑧𝑥 → ∃ 𝑤𝑊 𝑤𝑧 ) ∧ ∀ 𝑧𝑊𝑤𝑊 ( ( 𝑧𝑥𝑤𝑥 ) → ( ¬ 𝑧 = 𝑤 → ∀ 𝑦𝑊 ( 𝑦𝑧 → ¬ 𝑦𝑤 ) ) ) ) → ∃ 𝑦𝑊𝑧𝑊 ( 𝑧𝑥 → ∃ 𝑤𝑊𝑣𝑊 ( ( 𝑣𝑧𝑣𝑦 ) ↔ 𝑣 = 𝑤 ) ) )