| Step |
Hyp |
Ref |
Expression |
| 1 |
|
wfax.1 |
⊢ 𝑊 = ∪ ( 𝑅1 “ On ) |
| 2 |
|
trwf |
⊢ Tr ∪ ( 𝑅1 “ On ) |
| 3 |
|
treq |
⊢ ( 𝑊 = ∪ ( 𝑅1 “ On ) → ( Tr 𝑊 ↔ Tr ∪ ( 𝑅1 “ On ) ) ) |
| 4 |
1 3
|
ax-mp |
⊢ ( Tr 𝑊 ↔ Tr ∪ ( 𝑅1 “ On ) ) |
| 5 |
2 4
|
mpbir |
⊢ Tr 𝑊 |
| 6 |
|
ac8 |
⊢ ( ( ∀ 𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) → ∃ 𝑡 ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑡 ) ) |
| 7 |
|
uniwf |
⊢ ( 𝑥 ∈ ∪ ( 𝑅1 “ On ) ↔ ∪ 𝑥 ∈ ∪ ( 𝑅1 “ On ) ) |
| 8 |
|
inss2 |
⊢ ( 𝑡 ∩ ∪ 𝑥 ) ⊆ ∪ 𝑥 |
| 9 |
|
sswf |
⊢ ( ( ∪ 𝑥 ∈ ∪ ( 𝑅1 “ On ) ∧ ( 𝑡 ∩ ∪ 𝑥 ) ⊆ ∪ 𝑥 ) → ( 𝑡 ∩ ∪ 𝑥 ) ∈ ∪ ( 𝑅1 “ On ) ) |
| 10 |
8 9
|
mpan2 |
⊢ ( ∪ 𝑥 ∈ ∪ ( 𝑅1 “ On ) → ( 𝑡 ∩ ∪ 𝑥 ) ∈ ∪ ( 𝑅1 “ On ) ) |
| 11 |
7 10
|
sylbi |
⊢ ( 𝑥 ∈ ∪ ( 𝑅1 “ On ) → ( 𝑡 ∩ ∪ 𝑥 ) ∈ ∪ ( 𝑅1 “ On ) ) |
| 12 |
1
|
eleq2i |
⊢ ( 𝑥 ∈ 𝑊 ↔ 𝑥 ∈ ∪ ( 𝑅1 “ On ) ) |
| 13 |
1
|
eleq2i |
⊢ ( ( 𝑡 ∩ ∪ 𝑥 ) ∈ 𝑊 ↔ ( 𝑡 ∩ ∪ 𝑥 ) ∈ ∪ ( 𝑅1 “ On ) ) |
| 14 |
11 12 13
|
3imtr4i |
⊢ ( 𝑥 ∈ 𝑊 → ( 𝑡 ∩ ∪ 𝑥 ) ∈ 𝑊 ) |
| 15 |
|
inss1 |
⊢ ( 𝑧 ∩ 𝑡 ) ⊆ 𝑧 |
| 16 |
|
elssuni |
⊢ ( 𝑧 ∈ 𝑥 → 𝑧 ⊆ ∪ 𝑥 ) |
| 17 |
15 16
|
sstrid |
⊢ ( 𝑧 ∈ 𝑥 → ( 𝑧 ∩ 𝑡 ) ⊆ ∪ 𝑥 ) |
| 18 |
|
dfss |
⊢ ( ( 𝑧 ∩ 𝑡 ) ⊆ ∪ 𝑥 ↔ ( 𝑧 ∩ 𝑡 ) = ( ( 𝑧 ∩ 𝑡 ) ∩ ∪ 𝑥 ) ) |
| 19 |
17 18
|
sylib |
⊢ ( 𝑧 ∈ 𝑥 → ( 𝑧 ∩ 𝑡 ) = ( ( 𝑧 ∩ 𝑡 ) ∩ ∪ 𝑥 ) ) |
| 20 |
|
inass |
⊢ ( ( 𝑧 ∩ 𝑡 ) ∩ ∪ 𝑥 ) = ( 𝑧 ∩ ( 𝑡 ∩ ∪ 𝑥 ) ) |
| 21 |
19 20
|
eqtrdi |
⊢ ( 𝑧 ∈ 𝑥 → ( 𝑧 ∩ 𝑡 ) = ( 𝑧 ∩ ( 𝑡 ∩ ∪ 𝑥 ) ) ) |
| 22 |
21
|
eleq2d |
⊢ ( 𝑧 ∈ 𝑥 → ( 𝑣 ∈ ( 𝑧 ∩ 𝑡 ) ↔ 𝑣 ∈ ( 𝑧 ∩ ( 𝑡 ∩ ∪ 𝑥 ) ) ) ) |
| 23 |
22
|
eubidv |
⊢ ( 𝑧 ∈ 𝑥 → ( ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑡 ) ↔ ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ ( 𝑡 ∩ ∪ 𝑥 ) ) ) ) |
| 24 |
23
|
ralbiia |
⊢ ( ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑡 ) ↔ ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ ( 𝑡 ∩ ∪ 𝑥 ) ) ) |
| 25 |
|
ineq2 |
⊢ ( 𝑦 = ( 𝑡 ∩ ∪ 𝑥 ) → ( 𝑧 ∩ 𝑦 ) = ( 𝑧 ∩ ( 𝑡 ∩ ∪ 𝑥 ) ) ) |
| 26 |
25
|
eleq2d |
⊢ ( 𝑦 = ( 𝑡 ∩ ∪ 𝑥 ) → ( 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ↔ 𝑣 ∈ ( 𝑧 ∩ ( 𝑡 ∩ ∪ 𝑥 ) ) ) ) |
| 27 |
26
|
eubidv |
⊢ ( 𝑦 = ( 𝑡 ∩ ∪ 𝑥 ) → ( ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ↔ ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ ( 𝑡 ∩ ∪ 𝑥 ) ) ) ) |
| 28 |
27
|
ralbidv |
⊢ ( 𝑦 = ( 𝑡 ∩ ∪ 𝑥 ) → ( ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ↔ ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ ( 𝑡 ∩ ∪ 𝑥 ) ) ) ) |
| 29 |
28
|
rspcev |
⊢ ( ( ( 𝑡 ∩ ∪ 𝑥 ) ∈ 𝑊 ∧ ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ ( 𝑡 ∩ ∪ 𝑥 ) ) ) → ∃ 𝑦 ∈ 𝑊 ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) |
| 30 |
24 29
|
sylan2b |
⊢ ( ( ( 𝑡 ∩ ∪ 𝑥 ) ∈ 𝑊 ∧ ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑡 ) ) → ∃ 𝑦 ∈ 𝑊 ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) |
| 31 |
14 30
|
sylan |
⊢ ( ( 𝑥 ∈ 𝑊 ∧ ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑡 ) ) → ∃ 𝑦 ∈ 𝑊 ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) |
| 32 |
31
|
ex |
⊢ ( 𝑥 ∈ 𝑊 → ( ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑡 ) → ∃ 𝑦 ∈ 𝑊 ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ) |
| 33 |
32
|
exlimdv |
⊢ ( 𝑥 ∈ 𝑊 → ( ∃ 𝑡 ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑡 ) → ∃ 𝑦 ∈ 𝑊 ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ) |
| 34 |
6 33
|
syl5 |
⊢ ( 𝑥 ∈ 𝑊 → ( ( ∀ 𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) → ∃ 𝑦 ∈ 𝑊 ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ) |
| 35 |
34
|
rgen |
⊢ ∀ 𝑥 ∈ 𝑊 ( ( ∀ 𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) → ∃ 𝑦 ∈ 𝑊 ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) |
| 36 |
|
modelac8prim |
⊢ ( Tr 𝑊 → ( ∀ 𝑥 ∈ 𝑊 ( ( ∀ 𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) → ∃ 𝑦 ∈ 𝑊 ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ↔ ∀ 𝑥 ∈ 𝑊 ( ( ∀ 𝑧 ∈ 𝑊 ( 𝑧 ∈ 𝑥 → ∃ 𝑤 ∈ 𝑊 𝑤 ∈ 𝑧 ) ∧ ∀ 𝑧 ∈ 𝑊 ∀ 𝑤 ∈ 𝑊 ( ( 𝑧 ∈ 𝑥 ∧ 𝑤 ∈ 𝑥 ) → ( ¬ 𝑧 = 𝑤 → ∀ 𝑦 ∈ 𝑊 ( 𝑦 ∈ 𝑧 → ¬ 𝑦 ∈ 𝑤 ) ) ) ) → ∃ 𝑦 ∈ 𝑊 ∀ 𝑧 ∈ 𝑊 ( 𝑧 ∈ 𝑥 → ∃ 𝑤 ∈ 𝑊 ∀ 𝑣 ∈ 𝑊 ( ( 𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑦 ) ↔ 𝑣 = 𝑤 ) ) ) ) ) |
| 37 |
35 36
|
mpbii |
⊢ ( Tr 𝑊 → ∀ 𝑥 ∈ 𝑊 ( ( ∀ 𝑧 ∈ 𝑊 ( 𝑧 ∈ 𝑥 → ∃ 𝑤 ∈ 𝑊 𝑤 ∈ 𝑧 ) ∧ ∀ 𝑧 ∈ 𝑊 ∀ 𝑤 ∈ 𝑊 ( ( 𝑧 ∈ 𝑥 ∧ 𝑤 ∈ 𝑥 ) → ( ¬ 𝑧 = 𝑤 → ∀ 𝑦 ∈ 𝑊 ( 𝑦 ∈ 𝑧 → ¬ 𝑦 ∈ 𝑤 ) ) ) ) → ∃ 𝑦 ∈ 𝑊 ∀ 𝑧 ∈ 𝑊 ( 𝑧 ∈ 𝑥 → ∃ 𝑤 ∈ 𝑊 ∀ 𝑣 ∈ 𝑊 ( ( 𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑦 ) ↔ 𝑣 = 𝑤 ) ) ) ) |
| 38 |
5 37
|
ax-mp |
⊢ ∀ 𝑥 ∈ 𝑊 ( ( ∀ 𝑧 ∈ 𝑊 ( 𝑧 ∈ 𝑥 → ∃ 𝑤 ∈ 𝑊 𝑤 ∈ 𝑧 ) ∧ ∀ 𝑧 ∈ 𝑊 ∀ 𝑤 ∈ 𝑊 ( ( 𝑧 ∈ 𝑥 ∧ 𝑤 ∈ 𝑥 ) → ( ¬ 𝑧 = 𝑤 → ∀ 𝑦 ∈ 𝑊 ( 𝑦 ∈ 𝑧 → ¬ 𝑦 ∈ 𝑤 ) ) ) ) → ∃ 𝑦 ∈ 𝑊 ∀ 𝑧 ∈ 𝑊 ( 𝑧 ∈ 𝑥 → ∃ 𝑤 ∈ 𝑊 ∀ 𝑣 ∈ 𝑊 ( ( 𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑦 ) ↔ 𝑣 = 𝑤 ) ) ) |