Metamath Proof Explorer


Theorem uniwf

Description: A union is well-founded iff the base set is. (Contributed by Mario Carneiro, 8-Jun-2013) (Revised by Mario Carneiro, 17-Nov-2014)

Ref Expression
Assertion uniwf ( 𝐴 ( 𝑅1 “ On ) ↔ 𝐴 ( 𝑅1 “ On ) )

Proof

Step Hyp Ref Expression
1 r1tr Tr ( 𝑅1 ‘ suc ( rank ‘ 𝐴 ) )
2 rankidb ( 𝐴 ( 𝑅1 “ On ) → 𝐴 ∈ ( 𝑅1 ‘ suc ( rank ‘ 𝐴 ) ) )
3 trss ( Tr ( 𝑅1 ‘ suc ( rank ‘ 𝐴 ) ) → ( 𝐴 ∈ ( 𝑅1 ‘ suc ( rank ‘ 𝐴 ) ) → 𝐴 ⊆ ( 𝑅1 ‘ suc ( rank ‘ 𝐴 ) ) ) )
4 1 2 3 mpsyl ( 𝐴 ( 𝑅1 “ On ) → 𝐴 ⊆ ( 𝑅1 ‘ suc ( rank ‘ 𝐴 ) ) )
5 rankdmr1 ( rank ‘ 𝐴 ) ∈ dom 𝑅1
6 r1sucg ( ( rank ‘ 𝐴 ) ∈ dom 𝑅1 → ( 𝑅1 ‘ suc ( rank ‘ 𝐴 ) ) = 𝒫 ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) )
7 5 6 ax-mp ( 𝑅1 ‘ suc ( rank ‘ 𝐴 ) ) = 𝒫 ( 𝑅1 ‘ ( rank ‘ 𝐴 ) )
8 4 7 sseqtrdi ( 𝐴 ( 𝑅1 “ On ) → 𝐴 ⊆ 𝒫 ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) )
9 sspwuni ( 𝐴 ⊆ 𝒫 ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ↔ 𝐴 ⊆ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) )
10 8 9 sylib ( 𝐴 ( 𝑅1 “ On ) → 𝐴 ⊆ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) )
11 fvex ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ∈ V
12 11 elpw2 ( 𝐴 ∈ 𝒫 ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ↔ 𝐴 ⊆ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) )
13 10 12 sylibr ( 𝐴 ( 𝑅1 “ On ) → 𝐴 ∈ 𝒫 ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) )
14 13 7 eleqtrrdi ( 𝐴 ( 𝑅1 “ On ) → 𝐴 ∈ ( 𝑅1 ‘ suc ( rank ‘ 𝐴 ) ) )
15 r1elwf ( 𝐴 ∈ ( 𝑅1 ‘ suc ( rank ‘ 𝐴 ) ) → 𝐴 ( 𝑅1 “ On ) )
16 14 15 syl ( 𝐴 ( 𝑅1 “ On ) → 𝐴 ( 𝑅1 “ On ) )
17 pwwf ( 𝐴 ( 𝑅1 “ On ) ↔ 𝒫 𝐴 ( 𝑅1 “ On ) )
18 pwuni 𝐴 ⊆ 𝒫 𝐴
19 sswf ( ( 𝒫 𝐴 ( 𝑅1 “ On ) ∧ 𝐴 ⊆ 𝒫 𝐴 ) → 𝐴 ( 𝑅1 “ On ) )
20 18 19 mpan2 ( 𝒫 𝐴 ( 𝑅1 “ On ) → 𝐴 ( 𝑅1 “ On ) )
21 17 20 sylbi ( 𝐴 ( 𝑅1 “ On ) → 𝐴 ( 𝑅1 “ On ) )
22 16 21 impbii ( 𝐴 ( 𝑅1 “ On ) ↔ 𝐴 ( 𝑅1 “ On ) )