| Step |
Hyp |
Ref |
Expression |
| 1 |
|
r1tr |
⊢ Tr ( 𝑅1 ‘ suc ( rank ‘ 𝐴 ) ) |
| 2 |
|
rankidb |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → 𝐴 ∈ ( 𝑅1 ‘ suc ( rank ‘ 𝐴 ) ) ) |
| 3 |
|
trss |
⊢ ( Tr ( 𝑅1 ‘ suc ( rank ‘ 𝐴 ) ) → ( 𝐴 ∈ ( 𝑅1 ‘ suc ( rank ‘ 𝐴 ) ) → 𝐴 ⊆ ( 𝑅1 ‘ suc ( rank ‘ 𝐴 ) ) ) ) |
| 4 |
1 2 3
|
mpsyl |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → 𝐴 ⊆ ( 𝑅1 ‘ suc ( rank ‘ 𝐴 ) ) ) |
| 5 |
|
rankdmr1 |
⊢ ( rank ‘ 𝐴 ) ∈ dom 𝑅1 |
| 6 |
|
r1sucg |
⊢ ( ( rank ‘ 𝐴 ) ∈ dom 𝑅1 → ( 𝑅1 ‘ suc ( rank ‘ 𝐴 ) ) = 𝒫 ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) |
| 7 |
5 6
|
ax-mp |
⊢ ( 𝑅1 ‘ suc ( rank ‘ 𝐴 ) ) = 𝒫 ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) |
| 8 |
4 7
|
sseqtrdi |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → 𝐴 ⊆ 𝒫 ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) |
| 9 |
|
sspwuni |
⊢ ( 𝐴 ⊆ 𝒫 ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ↔ ∪ 𝐴 ⊆ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) |
| 10 |
8 9
|
sylib |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ∪ 𝐴 ⊆ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) |
| 11 |
|
fvex |
⊢ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ∈ V |
| 12 |
11
|
elpw2 |
⊢ ( ∪ 𝐴 ∈ 𝒫 ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ↔ ∪ 𝐴 ⊆ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) |
| 13 |
10 12
|
sylibr |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ∪ 𝐴 ∈ 𝒫 ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) |
| 14 |
13 7
|
eleqtrrdi |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ∪ 𝐴 ∈ ( 𝑅1 ‘ suc ( rank ‘ 𝐴 ) ) ) |
| 15 |
|
r1elwf |
⊢ ( ∪ 𝐴 ∈ ( 𝑅1 ‘ suc ( rank ‘ 𝐴 ) ) → ∪ 𝐴 ∈ ∪ ( 𝑅1 “ On ) ) |
| 16 |
14 15
|
syl |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ∪ 𝐴 ∈ ∪ ( 𝑅1 “ On ) ) |
| 17 |
|
pwwf |
⊢ ( ∪ 𝐴 ∈ ∪ ( 𝑅1 “ On ) ↔ 𝒫 ∪ 𝐴 ∈ ∪ ( 𝑅1 “ On ) ) |
| 18 |
|
pwuni |
⊢ 𝐴 ⊆ 𝒫 ∪ 𝐴 |
| 19 |
|
sswf |
⊢ ( ( 𝒫 ∪ 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐴 ⊆ 𝒫 ∪ 𝐴 ) → 𝐴 ∈ ∪ ( 𝑅1 “ On ) ) |
| 20 |
18 19
|
mpan2 |
⊢ ( 𝒫 ∪ 𝐴 ∈ ∪ ( 𝑅1 “ On ) → 𝐴 ∈ ∪ ( 𝑅1 “ On ) ) |
| 21 |
17 20
|
sylbi |
⊢ ( ∪ 𝐴 ∈ ∪ ( 𝑅1 “ On ) → 𝐴 ∈ ∪ ( 𝑅1 “ On ) ) |
| 22 |
16 21
|
impbii |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ↔ ∪ 𝐴 ∈ ∪ ( 𝑅1 “ On ) ) |