Step |
Hyp |
Ref |
Expression |
1 |
|
rankr1ag |
⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ dom 𝑅1 ) → ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ↔ ( rank ‘ 𝐴 ) ∈ 𝐵 ) ) |
2 |
1
|
notbid |
⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ dom 𝑅1 ) → ( ¬ 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ↔ ¬ ( rank ‘ 𝐴 ) ∈ 𝐵 ) ) |
3 |
|
r1funlim |
⊢ ( Fun 𝑅1 ∧ Lim dom 𝑅1 ) |
4 |
3
|
simpri |
⊢ Lim dom 𝑅1 |
5 |
|
limord |
⊢ ( Lim dom 𝑅1 → Ord dom 𝑅1 ) |
6 |
4 5
|
ax-mp |
⊢ Ord dom 𝑅1 |
7 |
|
ordelon |
⊢ ( ( Ord dom 𝑅1 ∧ 𝐵 ∈ dom 𝑅1 ) → 𝐵 ∈ On ) |
8 |
6 7
|
mpan |
⊢ ( 𝐵 ∈ dom 𝑅1 → 𝐵 ∈ On ) |
9 |
8
|
adantl |
⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ dom 𝑅1 ) → 𝐵 ∈ On ) |
10 |
|
rankon |
⊢ ( rank ‘ 𝐴 ) ∈ On |
11 |
|
ontri1 |
⊢ ( ( 𝐵 ∈ On ∧ ( rank ‘ 𝐴 ) ∈ On ) → ( 𝐵 ⊆ ( rank ‘ 𝐴 ) ↔ ¬ ( rank ‘ 𝐴 ) ∈ 𝐵 ) ) |
12 |
9 10 11
|
sylancl |
⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ dom 𝑅1 ) → ( 𝐵 ⊆ ( rank ‘ 𝐴 ) ↔ ¬ ( rank ‘ 𝐴 ) ∈ 𝐵 ) ) |
13 |
2 12
|
bitr4d |
⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ dom 𝑅1 ) → ( ¬ 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ↔ 𝐵 ⊆ ( rank ‘ 𝐴 ) ) ) |