Step |
Hyp |
Ref |
Expression |
1 |
|
rankr1ag |
|- ( ( A e. U. ( R1 " On ) /\ B e. dom R1 ) -> ( A e. ( R1 ` B ) <-> ( rank ` A ) e. B ) ) |
2 |
1
|
notbid |
|- ( ( A e. U. ( R1 " On ) /\ B e. dom R1 ) -> ( -. A e. ( R1 ` B ) <-> -. ( rank ` A ) e. B ) ) |
3 |
|
r1funlim |
|- ( Fun R1 /\ Lim dom R1 ) |
4 |
3
|
simpri |
|- Lim dom R1 |
5 |
|
limord |
|- ( Lim dom R1 -> Ord dom R1 ) |
6 |
4 5
|
ax-mp |
|- Ord dom R1 |
7 |
|
ordelon |
|- ( ( Ord dom R1 /\ B e. dom R1 ) -> B e. On ) |
8 |
6 7
|
mpan |
|- ( B e. dom R1 -> B e. On ) |
9 |
8
|
adantl |
|- ( ( A e. U. ( R1 " On ) /\ B e. dom R1 ) -> B e. On ) |
10 |
|
rankon |
|- ( rank ` A ) e. On |
11 |
|
ontri1 |
|- ( ( B e. On /\ ( rank ` A ) e. On ) -> ( B C_ ( rank ` A ) <-> -. ( rank ` A ) e. B ) ) |
12 |
9 10 11
|
sylancl |
|- ( ( A e. U. ( R1 " On ) /\ B e. dom R1 ) -> ( B C_ ( rank ` A ) <-> -. ( rank ` A ) e. B ) ) |
13 |
2 12
|
bitr4d |
|- ( ( A e. U. ( R1 " On ) /\ B e. dom R1 ) -> ( -. A e. ( R1 ` B ) <-> B C_ ( rank ` A ) ) ) |