Step |
Hyp |
Ref |
Expression |
1 |
|
r1rankidb |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → 𝐴 ⊆ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) |
2 |
1
|
sspwd |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → 𝒫 𝐴 ⊆ 𝒫 ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) |
3 |
|
rankdmr1 |
⊢ ( rank ‘ 𝐴 ) ∈ dom 𝑅1 |
4 |
|
r1sucg |
⊢ ( ( rank ‘ 𝐴 ) ∈ dom 𝑅1 → ( 𝑅1 ‘ suc ( rank ‘ 𝐴 ) ) = 𝒫 ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) |
5 |
3 4
|
ax-mp |
⊢ ( 𝑅1 ‘ suc ( rank ‘ 𝐴 ) ) = 𝒫 ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) |
6 |
2 5
|
sseqtrrdi |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → 𝒫 𝐴 ⊆ ( 𝑅1 ‘ suc ( rank ‘ 𝐴 ) ) ) |
7 |
|
fvex |
⊢ ( 𝑅1 ‘ suc ( rank ‘ 𝐴 ) ) ∈ V |
8 |
7
|
elpw2 |
⊢ ( 𝒫 𝐴 ∈ 𝒫 ( 𝑅1 ‘ suc ( rank ‘ 𝐴 ) ) ↔ 𝒫 𝐴 ⊆ ( 𝑅1 ‘ suc ( rank ‘ 𝐴 ) ) ) |
9 |
6 8
|
sylibr |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → 𝒫 𝐴 ∈ 𝒫 ( 𝑅1 ‘ suc ( rank ‘ 𝐴 ) ) ) |
10 |
|
r1funlim |
⊢ ( Fun 𝑅1 ∧ Lim dom 𝑅1 ) |
11 |
10
|
simpri |
⊢ Lim dom 𝑅1 |
12 |
|
limsuc |
⊢ ( Lim dom 𝑅1 → ( ( rank ‘ 𝐴 ) ∈ dom 𝑅1 ↔ suc ( rank ‘ 𝐴 ) ∈ dom 𝑅1 ) ) |
13 |
11 12
|
ax-mp |
⊢ ( ( rank ‘ 𝐴 ) ∈ dom 𝑅1 ↔ suc ( rank ‘ 𝐴 ) ∈ dom 𝑅1 ) |
14 |
3 13
|
mpbi |
⊢ suc ( rank ‘ 𝐴 ) ∈ dom 𝑅1 |
15 |
|
r1sucg |
⊢ ( suc ( rank ‘ 𝐴 ) ∈ dom 𝑅1 → ( 𝑅1 ‘ suc suc ( rank ‘ 𝐴 ) ) = 𝒫 ( 𝑅1 ‘ suc ( rank ‘ 𝐴 ) ) ) |
16 |
14 15
|
ax-mp |
⊢ ( 𝑅1 ‘ suc suc ( rank ‘ 𝐴 ) ) = 𝒫 ( 𝑅1 ‘ suc ( rank ‘ 𝐴 ) ) |
17 |
9 16
|
eleqtrrdi |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → 𝒫 𝐴 ∈ ( 𝑅1 ‘ suc suc ( rank ‘ 𝐴 ) ) ) |
18 |
|
r1elwf |
⊢ ( 𝒫 𝐴 ∈ ( 𝑅1 ‘ suc suc ( rank ‘ 𝐴 ) ) → 𝒫 𝐴 ∈ ∪ ( 𝑅1 “ On ) ) |
19 |
17 18
|
syl |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → 𝒫 𝐴 ∈ ∪ ( 𝑅1 “ On ) ) |
20 |
|
r1elssi |
⊢ ( 𝒫 𝐴 ∈ ∪ ( 𝑅1 “ On ) → 𝒫 𝐴 ⊆ ∪ ( 𝑅1 “ On ) ) |
21 |
|
pwexr |
⊢ ( 𝒫 𝐴 ∈ ∪ ( 𝑅1 “ On ) → 𝐴 ∈ V ) |
22 |
|
pwidg |
⊢ ( 𝐴 ∈ V → 𝐴 ∈ 𝒫 𝐴 ) |
23 |
21 22
|
syl |
⊢ ( 𝒫 𝐴 ∈ ∪ ( 𝑅1 “ On ) → 𝐴 ∈ 𝒫 𝐴 ) |
24 |
20 23
|
sseldd |
⊢ ( 𝒫 𝐴 ∈ ∪ ( 𝑅1 “ On ) → 𝐴 ∈ ∪ ( 𝑅1 “ On ) ) |
25 |
19 24
|
impbii |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ↔ 𝒫 𝐴 ∈ ∪ ( 𝑅1 “ On ) ) |