Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Eric Schmidt
Permutation models
nregmodellem
Next ⟩
nregmodel
Metamath Proof Explorer
Ascii
Unicode
Theorem
nregmodellem
Description:
Lemma for
nregmodel
.
(Contributed by
Eric Schmidt
, 16-Nov-2025)
Ref
Expression
Hypotheses
nregmodel.1
⊢
F
=
I
↾
V
∖
∅
∅
∪
∅
∅
∅
∅
nregmodel.2
⊢
R
=
F
-1
∘
E
Assertion
nregmodellem
⊢
x
R
∅
↔
x
∈
∅
Proof
Step
Hyp
Ref
Expression
1
nregmodel.1
⊢
F
=
I
↾
V
∖
∅
∅
∪
∅
∅
∅
∅
2
nregmodel.2
⊢
R
=
F
-1
∘
E
3
1
nregmodelf1o
⊢
F
:
V
⟶
1-1 onto
V
4
vex
⊢
x
∈
V
5
0ex
⊢
∅
∈
V
6
3
2
4
5
brpermmodel
⊢
x
R
∅
↔
x
∈
F
⁡
∅
7
f1ofun
⊢
F
:
V
⟶
1-1 onto
V
→
Fun
⁡
F
8
3
7
ax-mp
⊢
Fun
⁡
F
9
opex
⊢
∅
∅
∈
V
10
9
prid1
⊢
∅
∅
∈
∅
∅
∅
∅
11
elun2
⊢
∅
∅
∈
∅
∅
∅
∅
→
∅
∅
∈
I
↾
V
∖
∅
∅
∪
∅
∅
∅
∅
12
10
11
ax-mp
⊢
∅
∅
∈
I
↾
V
∖
∅
∅
∪
∅
∅
∅
∅
13
12
1
eleqtrri
⊢
∅
∅
∈
F
14
funopfv
⊢
Fun
⁡
F
→
∅
∅
∈
F
→
F
⁡
∅
=
∅
15
8
13
14
mp2
⊢
F
⁡
∅
=
∅
16
15
eleq2i
⊢
x
∈
F
⁡
∅
↔
x
∈
∅
17
6
16
bitri
⊢
x
R
∅
↔
x
∈
∅