Metamath Proof Explorer


Theorem nregmodellem

Description: Lemma for nregmodel . (Contributed by Eric Schmidt, 16-Nov-2025)

Ref Expression
Hypotheses nregmodel.1 F = I V
nregmodel.2 R = F -1 E
Assertion nregmodellem x R x

Proof

Step Hyp Ref Expression
1 nregmodel.1 F = I V
2 nregmodel.2 R = F -1 E
3 1 nregmodelf1o F : V 1-1 onto V
4 vex x V
5 0ex V
6 3 2 4 5 brpermmodel x R x F
7 f1ofun F : V 1-1 onto V Fun F
8 3 7 ax-mp Fun F
9 opex V
10 9 prid1
11 elun2 I V
12 10 11 ax-mp I V
13 12 1 eleqtrri F
14 funopfv Fun F F F =
15 8 13 14 mp2 F =
16 15 eleq2i x F x
17 6 16 bitri x R x