Metamath Proof Explorer


Theorem phplem3

Description: Lemma for Pigeonhole Principle. A natural number is equinumerous to its successor minus any element of the successor. (Contributed by NM, 26-May-1998)

Ref Expression
Hypotheses phplem2.1
|- A e. _V
phplem2.2
|- B e. _V
Assertion phplem3
|- ( ( A e. _om /\ B e. suc A ) -> A ~~ ( suc A \ { B } ) )

Proof

Step Hyp Ref Expression
1 phplem2.1
 |-  A e. _V
2 phplem2.2
 |-  B e. _V
3 elsuci
 |-  ( B e. suc A -> ( B e. A \/ B = A ) )
4 1 2 phplem2
 |-  ( ( A e. _om /\ B e. A ) -> A ~~ ( suc A \ { B } ) )
5 1 enref
 |-  A ~~ A
6 nnord
 |-  ( A e. _om -> Ord A )
7 orddif
 |-  ( Ord A -> A = ( suc A \ { A } ) )
8 6 7 syl
 |-  ( A e. _om -> A = ( suc A \ { A } ) )
9 sneq
 |-  ( A = B -> { A } = { B } )
10 9 difeq2d
 |-  ( A = B -> ( suc A \ { A } ) = ( suc A \ { B } ) )
11 10 eqcoms
 |-  ( B = A -> ( suc A \ { A } ) = ( suc A \ { B } ) )
12 8 11 sylan9eq
 |-  ( ( A e. _om /\ B = A ) -> A = ( suc A \ { B } ) )
13 5 12 breqtrid
 |-  ( ( A e. _om /\ B = A ) -> A ~~ ( suc A \ { B } ) )
14 4 13 jaodan
 |-  ( ( A e. _om /\ ( B e. A \/ B = A ) ) -> A ~~ ( suc A \ { B } ) )
15 3 14 sylan2
 |-  ( ( A e. _om /\ B e. suc A ) -> A ~~ ( suc A \ { B } ) )