Metamath Proof Explorer


Theorem pjcofni

Description: Functionality of composition of projections. (Contributed by NM, 1-Oct-2000) (New usage is discouraged.)

Ref Expression
Hypotheses pjco.1
|- G e. CH
pjco.2
|- H e. CH
Assertion pjcofni
|- ( ( projh ` G ) o. ( projh ` H ) ) Fn ~H

Proof

Step Hyp Ref Expression
1 pjco.1
 |-  G e. CH
2 pjco.2
 |-  H e. CH
3 1 pjfi
 |-  ( projh ` G ) : ~H --> ~H
4 2 pjfi
 |-  ( projh ` H ) : ~H --> ~H
5 3 4 hocofni
 |-  ( ( projh ` G ) o. ( projh ` H ) ) Fn ~H