| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pjco.1 |
|- G e. CH |
| 2 |
|
pjco.2 |
|- H e. CH |
| 3 |
2 1
|
pjcoi |
|- ( x e. ~H -> ( ( ( projh ` H ) o. ( projh ` G ) ) ` x ) = ( ( projh ` H ) ` ( ( projh ` G ) ` x ) ) ) |
| 4 |
3
|
adantl |
|- ( ( G C_ H /\ x e. ~H ) -> ( ( ( projh ` H ) o. ( projh ` G ) ) ` x ) = ( ( projh ` H ) ` ( ( projh ` G ) ` x ) ) ) |
| 5 |
1
|
pjcli |
|- ( x e. ~H -> ( ( projh ` G ) ` x ) e. G ) |
| 6 |
|
ssel2 |
|- ( ( G C_ H /\ ( ( projh ` G ) ` x ) e. G ) -> ( ( projh ` G ) ` x ) e. H ) |
| 7 |
5 6
|
sylan2 |
|- ( ( G C_ H /\ x e. ~H ) -> ( ( projh ` G ) ` x ) e. H ) |
| 8 |
|
pjid |
|- ( ( H e. CH /\ ( ( projh ` G ) ` x ) e. H ) -> ( ( projh ` H ) ` ( ( projh ` G ) ` x ) ) = ( ( projh ` G ) ` x ) ) |
| 9 |
2 7 8
|
sylancr |
|- ( ( G C_ H /\ x e. ~H ) -> ( ( projh ` H ) ` ( ( projh ` G ) ` x ) ) = ( ( projh ` G ) ` x ) ) |
| 10 |
4 9
|
eqtrd |
|- ( ( G C_ H /\ x e. ~H ) -> ( ( ( projh ` H ) o. ( projh ` G ) ) ` x ) = ( ( projh ` G ) ` x ) ) |
| 11 |
10
|
ralrimiva |
|- ( G C_ H -> A. x e. ~H ( ( ( projh ` H ) o. ( projh ` G ) ) ` x ) = ( ( projh ` G ) ` x ) ) |
| 12 |
2
|
pjfi |
|- ( projh ` H ) : ~H --> ~H |
| 13 |
1
|
pjfi |
|- ( projh ` G ) : ~H --> ~H |
| 14 |
12 13
|
hocofi |
|- ( ( projh ` H ) o. ( projh ` G ) ) : ~H --> ~H |
| 15 |
14 13
|
hoeqi |
|- ( A. x e. ~H ( ( ( projh ` H ) o. ( projh ` G ) ) ` x ) = ( ( projh ` G ) ` x ) <-> ( ( projh ` H ) o. ( projh ` G ) ) = ( projh ` G ) ) |
| 16 |
11 15
|
sylib |
|- ( G C_ H -> ( ( projh ` H ) o. ( projh ` G ) ) = ( projh ` G ) ) |
| 17 |
|
rneq |
|- ( ( ( projh ` H ) o. ( projh ` G ) ) = ( projh ` G ) -> ran ( ( projh ` H ) o. ( projh ` G ) ) = ran ( projh ` G ) ) |
| 18 |
|
rncoss |
|- ran ( ( projh ` H ) o. ( projh ` G ) ) C_ ran ( projh ` H ) |
| 19 |
17 18
|
eqsstrrdi |
|- ( ( ( projh ` H ) o. ( projh ` G ) ) = ( projh ` G ) -> ran ( projh ` G ) C_ ran ( projh ` H ) ) |
| 20 |
1
|
pjrni |
|- ran ( projh ` G ) = G |
| 21 |
2
|
pjrni |
|- ran ( projh ` H ) = H |
| 22 |
19 20 21
|
3sstr3g |
|- ( ( ( projh ` H ) o. ( projh ` G ) ) = ( projh ` G ) -> G C_ H ) |
| 23 |
16 22
|
impbii |
|- ( G C_ H <-> ( ( projh ` H ) o. ( projh ` G ) ) = ( projh ` G ) ) |