| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pjfn.1 |
|- H e. CH |
| 2 |
1
|
pjfni |
|- ( projh ` H ) Fn ~H |
| 3 |
1
|
pjcli |
|- ( x e. ~H -> ( ( projh ` H ) ` x ) e. H ) |
| 4 |
3
|
rgen |
|- A. x e. ~H ( ( projh ` H ) ` x ) e. H |
| 5 |
|
ffnfv |
|- ( ( projh ` H ) : ~H --> H <-> ( ( projh ` H ) Fn ~H /\ A. x e. ~H ( ( projh ` H ) ` x ) e. H ) ) |
| 6 |
2 4 5
|
mpbir2an |
|- ( projh ` H ) : ~H --> H |
| 7 |
|
frn |
|- ( ( projh ` H ) : ~H --> H -> ran ( projh ` H ) C_ H ) |
| 8 |
6 7
|
ax-mp |
|- ran ( projh ` H ) C_ H |
| 9 |
|
pjid |
|- ( ( H e. CH /\ y e. H ) -> ( ( projh ` H ) ` y ) = y ) |
| 10 |
1 9
|
mpan |
|- ( y e. H -> ( ( projh ` H ) ` y ) = y ) |
| 11 |
1
|
cheli |
|- ( y e. H -> y e. ~H ) |
| 12 |
|
fnfvelrn |
|- ( ( ( projh ` H ) Fn ~H /\ y e. ~H ) -> ( ( projh ` H ) ` y ) e. ran ( projh ` H ) ) |
| 13 |
2 11 12
|
sylancr |
|- ( y e. H -> ( ( projh ` H ) ` y ) e. ran ( projh ` H ) ) |
| 14 |
10 13
|
eqeltrrd |
|- ( y e. H -> y e. ran ( projh ` H ) ) |
| 15 |
14
|
ssriv |
|- H C_ ran ( projh ` H ) |
| 16 |
8 15
|
eqssi |
|- ran ( projh ` H ) = H |