Step |
Hyp |
Ref |
Expression |
1 |
|
pjco.1 |
⊢ 𝐺 ∈ Cℋ |
2 |
|
pjco.2 |
⊢ 𝐻 ∈ Cℋ |
3 |
2 1
|
pjcoi |
⊢ ( 𝑥 ∈ ℋ → ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ‘ 𝑥 ) = ( ( projℎ ‘ 𝐻 ) ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ) ) |
4 |
3
|
adantl |
⊢ ( ( 𝐺 ⊆ 𝐻 ∧ 𝑥 ∈ ℋ ) → ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ‘ 𝑥 ) = ( ( projℎ ‘ 𝐻 ) ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ) ) |
5 |
1
|
pjcli |
⊢ ( 𝑥 ∈ ℋ → ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ∈ 𝐺 ) |
6 |
|
ssel2 |
⊢ ( ( 𝐺 ⊆ 𝐻 ∧ ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ∈ 𝐺 ) → ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ∈ 𝐻 ) |
7 |
5 6
|
sylan2 |
⊢ ( ( 𝐺 ⊆ 𝐻 ∧ 𝑥 ∈ ℋ ) → ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ∈ 𝐻 ) |
8 |
|
pjid |
⊢ ( ( 𝐻 ∈ Cℋ ∧ ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ∈ 𝐻 ) → ( ( projℎ ‘ 𝐻 ) ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ) = ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ) |
9 |
2 7 8
|
sylancr |
⊢ ( ( 𝐺 ⊆ 𝐻 ∧ 𝑥 ∈ ℋ ) → ( ( projℎ ‘ 𝐻 ) ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ) = ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ) |
10 |
4 9
|
eqtrd |
⊢ ( ( 𝐺 ⊆ 𝐻 ∧ 𝑥 ∈ ℋ ) → ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ‘ 𝑥 ) = ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ) |
11 |
10
|
ralrimiva |
⊢ ( 𝐺 ⊆ 𝐻 → ∀ 𝑥 ∈ ℋ ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ‘ 𝑥 ) = ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ) |
12 |
2
|
pjfi |
⊢ ( projℎ ‘ 𝐻 ) : ℋ ⟶ ℋ |
13 |
1
|
pjfi |
⊢ ( projℎ ‘ 𝐺 ) : ℋ ⟶ ℋ |
14 |
12 13
|
hocofi |
⊢ ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) : ℋ ⟶ ℋ |
15 |
14 13
|
hoeqi |
⊢ ( ∀ 𝑥 ∈ ℋ ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ‘ 𝑥 ) = ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ↔ ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) = ( projℎ ‘ 𝐺 ) ) |
16 |
11 15
|
sylib |
⊢ ( 𝐺 ⊆ 𝐻 → ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) = ( projℎ ‘ 𝐺 ) ) |
17 |
|
rneq |
⊢ ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) = ( projℎ ‘ 𝐺 ) → ran ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) = ran ( projℎ ‘ 𝐺 ) ) |
18 |
|
rncoss |
⊢ ran ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ⊆ ran ( projℎ ‘ 𝐻 ) |
19 |
17 18
|
eqsstrrdi |
⊢ ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) = ( projℎ ‘ 𝐺 ) → ran ( projℎ ‘ 𝐺 ) ⊆ ran ( projℎ ‘ 𝐻 ) ) |
20 |
1
|
pjrni |
⊢ ran ( projℎ ‘ 𝐺 ) = 𝐺 |
21 |
2
|
pjrni |
⊢ ran ( projℎ ‘ 𝐻 ) = 𝐻 |
22 |
19 20 21
|
3sstr3g |
⊢ ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) = ( projℎ ‘ 𝐺 ) → 𝐺 ⊆ 𝐻 ) |
23 |
16 22
|
impbii |
⊢ ( 𝐺 ⊆ 𝐻 ↔ ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) = ( projℎ ‘ 𝐺 ) ) |