Metamath Proof Explorer
Description: Composition of projections. (Contributed by NM, 16-Aug-2000)
(New usage is discouraged.)
|
|
Ref |
Expression |
|
Hypotheses |
pjco.1 |
⊢ 𝐺 ∈ Cℋ |
|
|
pjco.2 |
⊢ 𝐻 ∈ Cℋ |
|
Assertion |
pjcoi |
⊢ ( 𝐴 ∈ ℋ → ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝐴 ) = ( ( projℎ ‘ 𝐺 ) ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pjco.1 |
⊢ 𝐺 ∈ Cℋ |
| 2 |
|
pjco.2 |
⊢ 𝐻 ∈ Cℋ |
| 3 |
1
|
pjfi |
⊢ ( projℎ ‘ 𝐺 ) : ℋ ⟶ ℋ |
| 4 |
2
|
pjfi |
⊢ ( projℎ ‘ 𝐻 ) : ℋ ⟶ ℋ |
| 5 |
3 4
|
hocoi |
⊢ ( 𝐴 ∈ ℋ → ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝐴 ) = ( ( projℎ ‘ 𝐺 ) ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) |