Metamath Proof Explorer


Theorem pjcoi

Description: Composition of projections. (Contributed by NM, 16-Aug-2000) (New usage is discouraged.)

Ref Expression
Hypotheses pjco.1
|- G e. CH
pjco.2
|- H e. CH
Assertion pjcoi
|- ( A e. ~H -> ( ( ( projh ` G ) o. ( projh ` H ) ) ` A ) = ( ( projh ` G ) ` ( ( projh ` H ) ` A ) ) )

Proof

Step Hyp Ref Expression
1 pjco.1
 |-  G e. CH
2 pjco.2
 |-  H e. CH
3 1 pjfi
 |-  ( projh ` G ) : ~H --> ~H
4 2 pjfi
 |-  ( projh ` H ) : ~H --> ~H
5 3 4 hocoi
 |-  ( A e. ~H -> ( ( ( projh ` G ) o. ( projh ` H ) ) ` A ) = ( ( projh ` G ) ` ( ( projh ` H ) ` A ) ) )