Metamath Proof Explorer


Theorem pjcocli

Description: Closure of composition of projections. (Contributed by NM, 29-Nov-2000) (New usage is discouraged.)

Ref Expression
Hypotheses pjco.1
|- G e. CH
pjco.2
|- H e. CH
Assertion pjcocli
|- ( A e. ~H -> ( ( ( projh ` G ) o. ( projh ` H ) ) ` A ) e. G )

Proof

Step Hyp Ref Expression
1 pjco.1
 |-  G e. CH
2 pjco.2
 |-  H e. CH
3 1 2 pjcoi
 |-  ( A e. ~H -> ( ( ( projh ` G ) o. ( projh ` H ) ) ` A ) = ( ( projh ` G ) ` ( ( projh ` H ) ` A ) ) )
4 2 pjhcli
 |-  ( A e. ~H -> ( ( projh ` H ) ` A ) e. ~H )
5 1 pjcli
 |-  ( ( ( projh ` H ) ` A ) e. ~H -> ( ( projh ` G ) ` ( ( projh ` H ) ` A ) ) e. G )
6 4 5 syl
 |-  ( A e. ~H -> ( ( projh ` G ) ` ( ( projh ` H ) ` A ) ) e. G )
7 3 6 eqeltrd
 |-  ( A e. ~H -> ( ( ( projh ` G ) o. ( projh ` H ) ) ` A ) e. G )