Metamath Proof Explorer


Theorem pjcocli

Description: Closure of composition of projections. (Contributed by NM, 29-Nov-2000) (New usage is discouraged.)

Ref Expression
Hypotheses pjco.1 G C
pjco.2 H C
Assertion pjcocli A proj G proj H A G

Proof

Step Hyp Ref Expression
1 pjco.1 G C
2 pjco.2 H C
3 1 2 pjcoi A proj G proj H A = proj G proj H A
4 2 pjhcli A proj H A
5 1 pjcli proj H A proj G proj H A G
6 4 5 syl A proj G proj H A G
7 3 6 eqeltrd A proj G proj H A G