Metamath Proof Explorer


Theorem pjcocli

Description: Closure of composition of projections. (Contributed by NM, 29-Nov-2000) (New usage is discouraged.)

Ref Expression
Hypotheses pjco.1 𝐺C
pjco.2 𝐻C
Assertion pjcocli ( 𝐴 ∈ ℋ → ( ( ( proj𝐺 ) ∘ ( proj𝐻 ) ) ‘ 𝐴 ) ∈ 𝐺 )

Proof

Step Hyp Ref Expression
1 pjco.1 𝐺C
2 pjco.2 𝐻C
3 1 2 pjcoi ( 𝐴 ∈ ℋ → ( ( ( proj𝐺 ) ∘ ( proj𝐻 ) ) ‘ 𝐴 ) = ( ( proj𝐺 ) ‘ ( ( proj𝐻 ) ‘ 𝐴 ) ) )
4 2 pjhcli ( 𝐴 ∈ ℋ → ( ( proj𝐻 ) ‘ 𝐴 ) ∈ ℋ )
5 1 pjcli ( ( ( proj𝐻 ) ‘ 𝐴 ) ∈ ℋ → ( ( proj𝐺 ) ‘ ( ( proj𝐻 ) ‘ 𝐴 ) ) ∈ 𝐺 )
6 4 5 syl ( 𝐴 ∈ ℋ → ( ( proj𝐺 ) ‘ ( ( proj𝐻 ) ‘ 𝐴 ) ) ∈ 𝐺 )
7 3 6 eqeltrd ( 𝐴 ∈ ℋ → ( ( ( proj𝐺 ) ∘ ( proj𝐻 ) ) ‘ 𝐴 ) ∈ 𝐺 )