Description: Closure of composition of projections. (Contributed by NM, 29-Nov-2000) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | pjco.1 | ⊢ 𝐺 ∈ Cℋ | |
pjco.2 | ⊢ 𝐻 ∈ Cℋ | ||
Assertion | pjcocli | ⊢ ( 𝐴 ∈ ℋ → ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝐴 ) ∈ 𝐺 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pjco.1 | ⊢ 𝐺 ∈ Cℋ | |
2 | pjco.2 | ⊢ 𝐻 ∈ Cℋ | |
3 | 1 2 | pjcoi | ⊢ ( 𝐴 ∈ ℋ → ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝐴 ) = ( ( projℎ ‘ 𝐺 ) ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) |
4 | 2 | pjhcli | ⊢ ( 𝐴 ∈ ℋ → ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ∈ ℋ ) |
5 | 1 | pjcli | ⊢ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ∈ ℋ → ( ( projℎ ‘ 𝐺 ) ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ∈ 𝐺 ) |
6 | 4 5 | syl | ⊢ ( 𝐴 ∈ ℋ → ( ( projℎ ‘ 𝐺 ) ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ∈ 𝐺 ) |
7 | 3 6 | eqeltrd | ⊢ ( 𝐴 ∈ ℋ → ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝐴 ) ∈ 𝐺 ) |