Metamath Proof Explorer
Description: Closure of composition of projections. (Contributed by NM, 7-Oct-2000)
(New usage is discouraged.)
|
|
Ref |
Expression |
|
Hypotheses |
pjco.1 |
⊢ 𝐺 ∈ Cℋ |
|
|
pjco.2 |
⊢ 𝐻 ∈ Cℋ |
|
Assertion |
pjcohcli |
⊢ ( 𝐴 ∈ ℋ → ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝐴 ) ∈ ℋ ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
pjco.1 |
⊢ 𝐺 ∈ Cℋ |
2 |
|
pjco.2 |
⊢ 𝐻 ∈ Cℋ |
3 |
1
|
pjfi |
⊢ ( projℎ ‘ 𝐺 ) : ℋ ⟶ ℋ |
4 |
2
|
pjfi |
⊢ ( projℎ ‘ 𝐻 ) : ℋ ⟶ ℋ |
5 |
3 4
|
hococli |
⊢ ( 𝐴 ∈ ℋ → ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝐴 ) ∈ ℋ ) |