Step |
Hyp |
Ref |
Expression |
1 |
|
pjco.1 |
⊢ 𝐺 ∈ Cℋ |
2 |
|
pjco.2 |
⊢ 𝐻 ∈ Cℋ |
3 |
2
|
pjhcli |
⊢ ( 𝐴 ∈ ℋ → ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ∈ ℋ ) |
4 |
1
|
pjadji |
⊢ ( ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( ( projℎ ‘ 𝐺 ) ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ·ih 𝐵 ) = ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ·ih ( ( projℎ ‘ 𝐺 ) ‘ 𝐵 ) ) ) |
5 |
3 4
|
sylan |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( ( projℎ ‘ 𝐺 ) ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ·ih 𝐵 ) = ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ·ih ( ( projℎ ‘ 𝐺 ) ‘ 𝐵 ) ) ) |
6 |
1
|
pjhcli |
⊢ ( 𝐵 ∈ ℋ → ( ( projℎ ‘ 𝐺 ) ‘ 𝐵 ) ∈ ℋ ) |
7 |
2
|
pjadji |
⊢ ( ( 𝐴 ∈ ℋ ∧ ( ( projℎ ‘ 𝐺 ) ‘ 𝐵 ) ∈ ℋ ) → ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ·ih ( ( projℎ ‘ 𝐺 ) ‘ 𝐵 ) ) = ( 𝐴 ·ih ( ( projℎ ‘ 𝐻 ) ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝐵 ) ) ) ) |
8 |
6 7
|
sylan2 |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ·ih ( ( projℎ ‘ 𝐺 ) ‘ 𝐵 ) ) = ( 𝐴 ·ih ( ( projℎ ‘ 𝐻 ) ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝐵 ) ) ) ) |
9 |
5 8
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( ( projℎ ‘ 𝐺 ) ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ·ih 𝐵 ) = ( 𝐴 ·ih ( ( projℎ ‘ 𝐻 ) ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝐵 ) ) ) ) |
10 |
1 2
|
pjcoi |
⊢ ( 𝐴 ∈ ℋ → ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝐴 ) = ( ( projℎ ‘ 𝐺 ) ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) |
11 |
10
|
oveq1d |
⊢ ( 𝐴 ∈ ℋ → ( ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝐴 ) ·ih 𝐵 ) = ( ( ( projℎ ‘ 𝐺 ) ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ·ih 𝐵 ) ) |
12 |
11
|
adantr |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝐴 ) ·ih 𝐵 ) = ( ( ( projℎ ‘ 𝐺 ) ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ·ih 𝐵 ) ) |
13 |
2 1
|
pjcoi |
⊢ ( 𝐵 ∈ ℋ → ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ‘ 𝐵 ) = ( ( projℎ ‘ 𝐻 ) ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝐵 ) ) ) |
14 |
13
|
oveq2d |
⊢ ( 𝐵 ∈ ℋ → ( 𝐴 ·ih ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ‘ 𝐵 ) ) = ( 𝐴 ·ih ( ( projℎ ‘ 𝐻 ) ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝐵 ) ) ) ) |
15 |
14
|
adantl |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 ·ih ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ‘ 𝐵 ) ) = ( 𝐴 ·ih ( ( projℎ ‘ 𝐻 ) ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝐵 ) ) ) ) |
16 |
9 12 15
|
3eqtr4d |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝐴 ) ·ih 𝐵 ) = ( 𝐴 ·ih ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ‘ 𝐵 ) ) ) |