Metamath Proof Explorer


Theorem pjadjcoi

Description: Adjoint of composition of projections. Special case of Theorem 3.11(viii) of Beran p. 106. (Contributed by NM, 6-Oct-2000) (New usage is discouraged.)

Ref Expression
Hypotheses pjco.1 𝐺C
pjco.2 𝐻C
Assertion pjadjcoi ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( ( ( proj𝐺 ) ∘ ( proj𝐻 ) ) ‘ 𝐴 ) ·ih 𝐵 ) = ( 𝐴 ·ih ( ( ( proj𝐻 ) ∘ ( proj𝐺 ) ) ‘ 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 pjco.1 𝐺C
2 pjco.2 𝐻C
3 2 pjhcli ( 𝐴 ∈ ℋ → ( ( proj𝐻 ) ‘ 𝐴 ) ∈ ℋ )
4 1 pjadji ( ( ( ( proj𝐻 ) ‘ 𝐴 ) ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( ( proj𝐺 ) ‘ ( ( proj𝐻 ) ‘ 𝐴 ) ) ·ih 𝐵 ) = ( ( ( proj𝐻 ) ‘ 𝐴 ) ·ih ( ( proj𝐺 ) ‘ 𝐵 ) ) )
5 3 4 sylan ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( ( proj𝐺 ) ‘ ( ( proj𝐻 ) ‘ 𝐴 ) ) ·ih 𝐵 ) = ( ( ( proj𝐻 ) ‘ 𝐴 ) ·ih ( ( proj𝐺 ) ‘ 𝐵 ) ) )
6 1 pjhcli ( 𝐵 ∈ ℋ → ( ( proj𝐺 ) ‘ 𝐵 ) ∈ ℋ )
7 2 pjadji ( ( 𝐴 ∈ ℋ ∧ ( ( proj𝐺 ) ‘ 𝐵 ) ∈ ℋ ) → ( ( ( proj𝐻 ) ‘ 𝐴 ) ·ih ( ( proj𝐺 ) ‘ 𝐵 ) ) = ( 𝐴 ·ih ( ( proj𝐻 ) ‘ ( ( proj𝐺 ) ‘ 𝐵 ) ) ) )
8 6 7 sylan2 ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( ( proj𝐻 ) ‘ 𝐴 ) ·ih ( ( proj𝐺 ) ‘ 𝐵 ) ) = ( 𝐴 ·ih ( ( proj𝐻 ) ‘ ( ( proj𝐺 ) ‘ 𝐵 ) ) ) )
9 5 8 eqtrd ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( ( proj𝐺 ) ‘ ( ( proj𝐻 ) ‘ 𝐴 ) ) ·ih 𝐵 ) = ( 𝐴 ·ih ( ( proj𝐻 ) ‘ ( ( proj𝐺 ) ‘ 𝐵 ) ) ) )
10 1 2 pjcoi ( 𝐴 ∈ ℋ → ( ( ( proj𝐺 ) ∘ ( proj𝐻 ) ) ‘ 𝐴 ) = ( ( proj𝐺 ) ‘ ( ( proj𝐻 ) ‘ 𝐴 ) ) )
11 10 oveq1d ( 𝐴 ∈ ℋ → ( ( ( ( proj𝐺 ) ∘ ( proj𝐻 ) ) ‘ 𝐴 ) ·ih 𝐵 ) = ( ( ( proj𝐺 ) ‘ ( ( proj𝐻 ) ‘ 𝐴 ) ) ·ih 𝐵 ) )
12 11 adantr ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( ( ( proj𝐺 ) ∘ ( proj𝐻 ) ) ‘ 𝐴 ) ·ih 𝐵 ) = ( ( ( proj𝐺 ) ‘ ( ( proj𝐻 ) ‘ 𝐴 ) ) ·ih 𝐵 ) )
13 2 1 pjcoi ( 𝐵 ∈ ℋ → ( ( ( proj𝐻 ) ∘ ( proj𝐺 ) ) ‘ 𝐵 ) = ( ( proj𝐻 ) ‘ ( ( proj𝐺 ) ‘ 𝐵 ) ) )
14 13 oveq2d ( 𝐵 ∈ ℋ → ( 𝐴 ·ih ( ( ( proj𝐻 ) ∘ ( proj𝐺 ) ) ‘ 𝐵 ) ) = ( 𝐴 ·ih ( ( proj𝐻 ) ‘ ( ( proj𝐺 ) ‘ 𝐵 ) ) ) )
15 14 adantl ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 ·ih ( ( ( proj𝐻 ) ∘ ( proj𝐺 ) ) ‘ 𝐵 ) ) = ( 𝐴 ·ih ( ( proj𝐻 ) ‘ ( ( proj𝐺 ) ‘ 𝐵 ) ) ) )
16 9 12 15 3eqtr4d ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( ( ( proj𝐺 ) ∘ ( proj𝐻 ) ) ‘ 𝐴 ) ·ih 𝐵 ) = ( 𝐴 ·ih ( ( ( proj𝐻 ) ∘ ( proj𝐺 ) ) ‘ 𝐵 ) ) )