Step |
Hyp |
Ref |
Expression |
1 |
|
pjco.1 |
|- G e. CH |
2 |
|
pjco.2 |
|- H e. CH |
3 |
2
|
pjhcli |
|- ( A e. ~H -> ( ( projh ` H ) ` A ) e. ~H ) |
4 |
1
|
pjadji |
|- ( ( ( ( projh ` H ) ` A ) e. ~H /\ B e. ~H ) -> ( ( ( projh ` G ) ` ( ( projh ` H ) ` A ) ) .ih B ) = ( ( ( projh ` H ) ` A ) .ih ( ( projh ` G ) ` B ) ) ) |
5 |
3 4
|
sylan |
|- ( ( A e. ~H /\ B e. ~H ) -> ( ( ( projh ` G ) ` ( ( projh ` H ) ` A ) ) .ih B ) = ( ( ( projh ` H ) ` A ) .ih ( ( projh ` G ) ` B ) ) ) |
6 |
1
|
pjhcli |
|- ( B e. ~H -> ( ( projh ` G ) ` B ) e. ~H ) |
7 |
2
|
pjadji |
|- ( ( A e. ~H /\ ( ( projh ` G ) ` B ) e. ~H ) -> ( ( ( projh ` H ) ` A ) .ih ( ( projh ` G ) ` B ) ) = ( A .ih ( ( projh ` H ) ` ( ( projh ` G ) ` B ) ) ) ) |
8 |
6 7
|
sylan2 |
|- ( ( A e. ~H /\ B e. ~H ) -> ( ( ( projh ` H ) ` A ) .ih ( ( projh ` G ) ` B ) ) = ( A .ih ( ( projh ` H ) ` ( ( projh ` G ) ` B ) ) ) ) |
9 |
5 8
|
eqtrd |
|- ( ( A e. ~H /\ B e. ~H ) -> ( ( ( projh ` G ) ` ( ( projh ` H ) ` A ) ) .ih B ) = ( A .ih ( ( projh ` H ) ` ( ( projh ` G ) ` B ) ) ) ) |
10 |
1 2
|
pjcoi |
|- ( A e. ~H -> ( ( ( projh ` G ) o. ( projh ` H ) ) ` A ) = ( ( projh ` G ) ` ( ( projh ` H ) ` A ) ) ) |
11 |
10
|
oveq1d |
|- ( A e. ~H -> ( ( ( ( projh ` G ) o. ( projh ` H ) ) ` A ) .ih B ) = ( ( ( projh ` G ) ` ( ( projh ` H ) ` A ) ) .ih B ) ) |
12 |
11
|
adantr |
|- ( ( A e. ~H /\ B e. ~H ) -> ( ( ( ( projh ` G ) o. ( projh ` H ) ) ` A ) .ih B ) = ( ( ( projh ` G ) ` ( ( projh ` H ) ` A ) ) .ih B ) ) |
13 |
2 1
|
pjcoi |
|- ( B e. ~H -> ( ( ( projh ` H ) o. ( projh ` G ) ) ` B ) = ( ( projh ` H ) ` ( ( projh ` G ) ` B ) ) ) |
14 |
13
|
oveq2d |
|- ( B e. ~H -> ( A .ih ( ( ( projh ` H ) o. ( projh ` G ) ) ` B ) ) = ( A .ih ( ( projh ` H ) ` ( ( projh ` G ) ` B ) ) ) ) |
15 |
14
|
adantl |
|- ( ( A e. ~H /\ B e. ~H ) -> ( A .ih ( ( ( projh ` H ) o. ( projh ` G ) ) ` B ) ) = ( A .ih ( ( projh ` H ) ` ( ( projh ` G ) ` B ) ) ) ) |
16 |
9 12 15
|
3eqtr4d |
|- ( ( A e. ~H /\ B e. ~H ) -> ( ( ( ( projh ` G ) o. ( projh ` H ) ) ` A ) .ih B ) = ( A .ih ( ( ( projh ` H ) o. ( projh ` G ) ) ` B ) ) ) |