Step |
Hyp |
Ref |
Expression |
1 |
|
pjco.1 |
⊢ 𝐺 ∈ Cℋ |
2 |
|
pjco.2 |
⊢ 𝐻 ∈ Cℋ |
3 |
1 2
|
pjcoi |
⊢ ( 𝑥 ∈ ℋ → ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) = ( ( projℎ ‘ 𝐺 ) ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 ) ) ) |
4 |
3
|
adantl |
⊢ ( ( 𝐺 ⊆ 𝐻 ∧ 𝑥 ∈ ℋ ) → ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) = ( ( projℎ ‘ 𝐺 ) ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 ) ) ) |
5 |
|
2fveq3 |
⊢ ( 𝑥 = if ( 𝑥 ∈ ℋ , 𝑥 , 0ℎ ) → ( ( projℎ ‘ 𝐺 ) ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 ) ) = ( ( projℎ ‘ 𝐺 ) ‘ ( ( projℎ ‘ 𝐻 ) ‘ if ( 𝑥 ∈ ℋ , 𝑥 , 0ℎ ) ) ) ) |
6 |
|
fveq2 |
⊢ ( 𝑥 = if ( 𝑥 ∈ ℋ , 𝑥 , 0ℎ ) → ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) = ( ( projℎ ‘ 𝐺 ) ‘ if ( 𝑥 ∈ ℋ , 𝑥 , 0ℎ ) ) ) |
7 |
5 6
|
eqeq12d |
⊢ ( 𝑥 = if ( 𝑥 ∈ ℋ , 𝑥 , 0ℎ ) → ( ( ( projℎ ‘ 𝐺 ) ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 ) ) = ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ↔ ( ( projℎ ‘ 𝐺 ) ‘ ( ( projℎ ‘ 𝐻 ) ‘ if ( 𝑥 ∈ ℋ , 𝑥 , 0ℎ ) ) ) = ( ( projℎ ‘ 𝐺 ) ‘ if ( 𝑥 ∈ ℋ , 𝑥 , 0ℎ ) ) ) ) |
8 |
7
|
imbi2d |
⊢ ( 𝑥 = if ( 𝑥 ∈ ℋ , 𝑥 , 0ℎ ) → ( ( 𝐺 ⊆ 𝐻 → ( ( projℎ ‘ 𝐺 ) ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 ) ) = ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ) ↔ ( 𝐺 ⊆ 𝐻 → ( ( projℎ ‘ 𝐺 ) ‘ ( ( projℎ ‘ 𝐻 ) ‘ if ( 𝑥 ∈ ℋ , 𝑥 , 0ℎ ) ) ) = ( ( projℎ ‘ 𝐺 ) ‘ if ( 𝑥 ∈ ℋ , 𝑥 , 0ℎ ) ) ) ) ) |
9 |
|
ifhvhv0 |
⊢ if ( 𝑥 ∈ ℋ , 𝑥 , 0ℎ ) ∈ ℋ |
10 |
1 9 2
|
pjss2i |
⊢ ( 𝐺 ⊆ 𝐻 → ( ( projℎ ‘ 𝐺 ) ‘ ( ( projℎ ‘ 𝐻 ) ‘ if ( 𝑥 ∈ ℋ , 𝑥 , 0ℎ ) ) ) = ( ( projℎ ‘ 𝐺 ) ‘ if ( 𝑥 ∈ ℋ , 𝑥 , 0ℎ ) ) ) |
11 |
8 10
|
dedth |
⊢ ( 𝑥 ∈ ℋ → ( 𝐺 ⊆ 𝐻 → ( ( projℎ ‘ 𝐺 ) ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 ) ) = ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ) ) |
12 |
11
|
impcom |
⊢ ( ( 𝐺 ⊆ 𝐻 ∧ 𝑥 ∈ ℋ ) → ( ( projℎ ‘ 𝐺 ) ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 ) ) = ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ) |
13 |
4 12
|
eqtrd |
⊢ ( ( 𝐺 ⊆ 𝐻 ∧ 𝑥 ∈ ℋ ) → ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) = ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ) |
14 |
13
|
ralrimiva |
⊢ ( 𝐺 ⊆ 𝐻 → ∀ 𝑥 ∈ ℋ ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) = ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ) |
15 |
1
|
pjfi |
⊢ ( projℎ ‘ 𝐺 ) : ℋ ⟶ ℋ |
16 |
2
|
pjfi |
⊢ ( projℎ ‘ 𝐻 ) : ℋ ⟶ ℋ |
17 |
15 16
|
hocofi |
⊢ ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) : ℋ ⟶ ℋ |
18 |
17 15
|
hoeqi |
⊢ ( ∀ 𝑥 ∈ ℋ ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) = ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ↔ ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) = ( projℎ ‘ 𝐺 ) ) |
19 |
14 18
|
sylib |
⊢ ( 𝐺 ⊆ 𝐻 → ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) = ( projℎ ‘ 𝐺 ) ) |
20 |
|
fveq1 |
⊢ ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) = ( projℎ ‘ 𝐺 ) → ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑦 ) = ( ( projℎ ‘ 𝐺 ) ‘ 𝑦 ) ) |
21 |
20
|
oveq2d |
⊢ ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) = ( projℎ ‘ 𝐺 ) → ( 𝑥 ·ih ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑦 ) ) = ( 𝑥 ·ih ( ( projℎ ‘ 𝐺 ) ‘ 𝑦 ) ) ) |
22 |
21
|
ad2antlr |
⊢ ( ( ( 𝑥 ∈ ℋ ∧ ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) = ( projℎ ‘ 𝐺 ) ) ∧ 𝑦 ∈ ℋ ) → ( 𝑥 ·ih ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑦 ) ) = ( 𝑥 ·ih ( ( projℎ ‘ 𝐺 ) ‘ 𝑦 ) ) ) |
23 |
2 1
|
pjadjcoi |
⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑦 ) ) ) |
24 |
23
|
adantlr |
⊢ ( ( ( 𝑥 ∈ ℋ ∧ ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) = ( projℎ ‘ 𝐺 ) ) ∧ 𝑦 ∈ ℋ ) → ( ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑦 ) ) ) |
25 |
1
|
pjadji |
⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( ( projℎ ‘ 𝐺 ) ‘ 𝑦 ) ) ) |
26 |
25
|
adantlr |
⊢ ( ( ( 𝑥 ∈ ℋ ∧ ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) = ( projℎ ‘ 𝐺 ) ) ∧ 𝑦 ∈ ℋ ) → ( ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( ( projℎ ‘ 𝐺 ) ‘ 𝑦 ) ) ) |
27 |
22 24 26
|
3eqtr4d |
⊢ ( ( ( 𝑥 ∈ ℋ ∧ ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) = ( projℎ ‘ 𝐺 ) ) ∧ 𝑦 ∈ ℋ ) → ( ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ‘ 𝑥 ) ·ih 𝑦 ) = ( ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ·ih 𝑦 ) ) |
28 |
27
|
exp31 |
⊢ ( 𝑥 ∈ ℋ → ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) = ( projℎ ‘ 𝐺 ) → ( 𝑦 ∈ ℋ → ( ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ‘ 𝑥 ) ·ih 𝑦 ) = ( ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ·ih 𝑦 ) ) ) ) |
29 |
28
|
ralrimdv |
⊢ ( 𝑥 ∈ ℋ → ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) = ( projℎ ‘ 𝐺 ) → ∀ 𝑦 ∈ ℋ ( ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ‘ 𝑥 ) ·ih 𝑦 ) = ( ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ·ih 𝑦 ) ) ) |
30 |
2 1
|
pjcohcli |
⊢ ( 𝑥 ∈ ℋ → ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ‘ 𝑥 ) ∈ ℋ ) |
31 |
1
|
pjhcli |
⊢ ( 𝑥 ∈ ℋ → ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ∈ ℋ ) |
32 |
|
hial2eq |
⊢ ( ( ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ‘ 𝑥 ) ∈ ℋ ∧ ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ∈ ℋ ) → ( ∀ 𝑦 ∈ ℋ ( ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ‘ 𝑥 ) ·ih 𝑦 ) = ( ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ·ih 𝑦 ) ↔ ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ‘ 𝑥 ) = ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ) ) |
33 |
30 31 32
|
syl2anc |
⊢ ( 𝑥 ∈ ℋ → ( ∀ 𝑦 ∈ ℋ ( ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ‘ 𝑥 ) ·ih 𝑦 ) = ( ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ·ih 𝑦 ) ↔ ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ‘ 𝑥 ) = ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ) ) |
34 |
29 33
|
sylibd |
⊢ ( 𝑥 ∈ ℋ → ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) = ( projℎ ‘ 𝐺 ) → ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ‘ 𝑥 ) = ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ) ) |
35 |
34
|
com12 |
⊢ ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) = ( projℎ ‘ 𝐺 ) → ( 𝑥 ∈ ℋ → ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ‘ 𝑥 ) = ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ) ) |
36 |
35
|
ralrimiv |
⊢ ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) = ( projℎ ‘ 𝐺 ) → ∀ 𝑥 ∈ ℋ ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ‘ 𝑥 ) = ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ) |
37 |
16 15
|
hocofi |
⊢ ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) : ℋ ⟶ ℋ |
38 |
37 15
|
hoeqi |
⊢ ( ∀ 𝑥 ∈ ℋ ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ‘ 𝑥 ) = ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ↔ ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) = ( projℎ ‘ 𝐺 ) ) |
39 |
36 38
|
sylib |
⊢ ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) = ( projℎ ‘ 𝐺 ) → ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) = ( projℎ ‘ 𝐺 ) ) |
40 |
1 2
|
pjss1coi |
⊢ ( 𝐺 ⊆ 𝐻 ↔ ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) = ( projℎ ‘ 𝐺 ) ) |
41 |
39 40
|
sylibr |
⊢ ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) = ( projℎ ‘ 𝐺 ) → 𝐺 ⊆ 𝐻 ) |
42 |
19 41
|
impbii |
⊢ ( 𝐺 ⊆ 𝐻 ↔ ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) = ( projℎ ‘ 𝐺 ) ) |