Step |
Hyp |
Ref |
Expression |
1 |
|
pjco.1 |
⊢ 𝐺 ∈ Cℋ |
2 |
|
pjco.2 |
⊢ 𝐻 ∈ Cℋ |
3 |
|
fveq2 |
⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) = ( ( projℎ ‘ 𝐺 ) ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ) |
4 |
|
fveq2 |
⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) = ( ( projℎ ‘ 𝐻 ) ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ) |
5 |
3 4
|
oveq12d |
⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) = ( ( ( projℎ ‘ 𝐺 ) ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) −ℎ ( ( projℎ ‘ 𝐻 ) ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ) ) |
6 |
|
fveq2 |
⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( ( projℎ ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) ‘ 𝐴 ) = ( ( projℎ ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ) |
7 |
5 6
|
eqeq12d |
⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) = ( ( projℎ ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) ‘ 𝐴 ) ↔ ( ( ( projℎ ‘ 𝐺 ) ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) −ℎ ( ( projℎ ‘ 𝐻 ) ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ) = ( ( projℎ ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ) ) |
8 |
7
|
imbi2d |
⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( ( 𝐻 ⊆ 𝐺 → ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) = ( ( projℎ ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) ‘ 𝐴 ) ) ↔ ( 𝐻 ⊆ 𝐺 → ( ( ( projℎ ‘ 𝐺 ) ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) −ℎ ( ( projℎ ‘ 𝐻 ) ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ) = ( ( projℎ ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ) ) ) |
9 |
|
ifhvhv0 |
⊢ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ∈ ℋ |
10 |
2 9 1
|
pjssmii |
⊢ ( 𝐻 ⊆ 𝐺 → ( ( ( projℎ ‘ 𝐺 ) ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) −ℎ ( ( projℎ ‘ 𝐻 ) ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ) = ( ( projℎ ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ) |
11 |
8 10
|
dedth |
⊢ ( 𝐴 ∈ ℋ → ( 𝐻 ⊆ 𝐺 → ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) = ( ( projℎ ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) ‘ 𝐴 ) ) ) |