Step |
Hyp |
Ref |
Expression |
1 |
|
pjco.1 |
|- G e. CH |
2 |
|
pjco.2 |
|- H e. CH |
3 |
1 2
|
pjcoi |
|- ( x e. ~H -> ( ( ( projh ` G ) o. ( projh ` H ) ) ` x ) = ( ( projh ` G ) ` ( ( projh ` H ) ` x ) ) ) |
4 |
3
|
adantl |
|- ( ( G C_ H /\ x e. ~H ) -> ( ( ( projh ` G ) o. ( projh ` H ) ) ` x ) = ( ( projh ` G ) ` ( ( projh ` H ) ` x ) ) ) |
5 |
|
2fveq3 |
|- ( x = if ( x e. ~H , x , 0h ) -> ( ( projh ` G ) ` ( ( projh ` H ) ` x ) ) = ( ( projh ` G ) ` ( ( projh ` H ) ` if ( x e. ~H , x , 0h ) ) ) ) |
6 |
|
fveq2 |
|- ( x = if ( x e. ~H , x , 0h ) -> ( ( projh ` G ) ` x ) = ( ( projh ` G ) ` if ( x e. ~H , x , 0h ) ) ) |
7 |
5 6
|
eqeq12d |
|- ( x = if ( x e. ~H , x , 0h ) -> ( ( ( projh ` G ) ` ( ( projh ` H ) ` x ) ) = ( ( projh ` G ) ` x ) <-> ( ( projh ` G ) ` ( ( projh ` H ) ` if ( x e. ~H , x , 0h ) ) ) = ( ( projh ` G ) ` if ( x e. ~H , x , 0h ) ) ) ) |
8 |
7
|
imbi2d |
|- ( x = if ( x e. ~H , x , 0h ) -> ( ( G C_ H -> ( ( projh ` G ) ` ( ( projh ` H ) ` x ) ) = ( ( projh ` G ) ` x ) ) <-> ( G C_ H -> ( ( projh ` G ) ` ( ( projh ` H ) ` if ( x e. ~H , x , 0h ) ) ) = ( ( projh ` G ) ` if ( x e. ~H , x , 0h ) ) ) ) ) |
9 |
|
ifhvhv0 |
|- if ( x e. ~H , x , 0h ) e. ~H |
10 |
1 9 2
|
pjss2i |
|- ( G C_ H -> ( ( projh ` G ) ` ( ( projh ` H ) ` if ( x e. ~H , x , 0h ) ) ) = ( ( projh ` G ) ` if ( x e. ~H , x , 0h ) ) ) |
11 |
8 10
|
dedth |
|- ( x e. ~H -> ( G C_ H -> ( ( projh ` G ) ` ( ( projh ` H ) ` x ) ) = ( ( projh ` G ) ` x ) ) ) |
12 |
11
|
impcom |
|- ( ( G C_ H /\ x e. ~H ) -> ( ( projh ` G ) ` ( ( projh ` H ) ` x ) ) = ( ( projh ` G ) ` x ) ) |
13 |
4 12
|
eqtrd |
|- ( ( G C_ H /\ x e. ~H ) -> ( ( ( projh ` G ) o. ( projh ` H ) ) ` x ) = ( ( projh ` G ) ` x ) ) |
14 |
13
|
ralrimiva |
|- ( G C_ H -> A. x e. ~H ( ( ( projh ` G ) o. ( projh ` H ) ) ` x ) = ( ( projh ` G ) ` x ) ) |
15 |
1
|
pjfi |
|- ( projh ` G ) : ~H --> ~H |
16 |
2
|
pjfi |
|- ( projh ` H ) : ~H --> ~H |
17 |
15 16
|
hocofi |
|- ( ( projh ` G ) o. ( projh ` H ) ) : ~H --> ~H |
18 |
17 15
|
hoeqi |
|- ( A. x e. ~H ( ( ( projh ` G ) o. ( projh ` H ) ) ` x ) = ( ( projh ` G ) ` x ) <-> ( ( projh ` G ) o. ( projh ` H ) ) = ( projh ` G ) ) |
19 |
14 18
|
sylib |
|- ( G C_ H -> ( ( projh ` G ) o. ( projh ` H ) ) = ( projh ` G ) ) |
20 |
|
fveq1 |
|- ( ( ( projh ` G ) o. ( projh ` H ) ) = ( projh ` G ) -> ( ( ( projh ` G ) o. ( projh ` H ) ) ` y ) = ( ( projh ` G ) ` y ) ) |
21 |
20
|
oveq2d |
|- ( ( ( projh ` G ) o. ( projh ` H ) ) = ( projh ` G ) -> ( x .ih ( ( ( projh ` G ) o. ( projh ` H ) ) ` y ) ) = ( x .ih ( ( projh ` G ) ` y ) ) ) |
22 |
21
|
ad2antlr |
|- ( ( ( x e. ~H /\ ( ( projh ` G ) o. ( projh ` H ) ) = ( projh ` G ) ) /\ y e. ~H ) -> ( x .ih ( ( ( projh ` G ) o. ( projh ` H ) ) ` y ) ) = ( x .ih ( ( projh ` G ) ` y ) ) ) |
23 |
2 1
|
pjadjcoi |
|- ( ( x e. ~H /\ y e. ~H ) -> ( ( ( ( projh ` H ) o. ( projh ` G ) ) ` x ) .ih y ) = ( x .ih ( ( ( projh ` G ) o. ( projh ` H ) ) ` y ) ) ) |
24 |
23
|
adantlr |
|- ( ( ( x e. ~H /\ ( ( projh ` G ) o. ( projh ` H ) ) = ( projh ` G ) ) /\ y e. ~H ) -> ( ( ( ( projh ` H ) o. ( projh ` G ) ) ` x ) .ih y ) = ( x .ih ( ( ( projh ` G ) o. ( projh ` H ) ) ` y ) ) ) |
25 |
1
|
pjadji |
|- ( ( x e. ~H /\ y e. ~H ) -> ( ( ( projh ` G ) ` x ) .ih y ) = ( x .ih ( ( projh ` G ) ` y ) ) ) |
26 |
25
|
adantlr |
|- ( ( ( x e. ~H /\ ( ( projh ` G ) o. ( projh ` H ) ) = ( projh ` G ) ) /\ y e. ~H ) -> ( ( ( projh ` G ) ` x ) .ih y ) = ( x .ih ( ( projh ` G ) ` y ) ) ) |
27 |
22 24 26
|
3eqtr4d |
|- ( ( ( x e. ~H /\ ( ( projh ` G ) o. ( projh ` H ) ) = ( projh ` G ) ) /\ y e. ~H ) -> ( ( ( ( projh ` H ) o. ( projh ` G ) ) ` x ) .ih y ) = ( ( ( projh ` G ) ` x ) .ih y ) ) |
28 |
27
|
exp31 |
|- ( x e. ~H -> ( ( ( projh ` G ) o. ( projh ` H ) ) = ( projh ` G ) -> ( y e. ~H -> ( ( ( ( projh ` H ) o. ( projh ` G ) ) ` x ) .ih y ) = ( ( ( projh ` G ) ` x ) .ih y ) ) ) ) |
29 |
28
|
ralrimdv |
|- ( x e. ~H -> ( ( ( projh ` G ) o. ( projh ` H ) ) = ( projh ` G ) -> A. y e. ~H ( ( ( ( projh ` H ) o. ( projh ` G ) ) ` x ) .ih y ) = ( ( ( projh ` G ) ` x ) .ih y ) ) ) |
30 |
2 1
|
pjcohcli |
|- ( x e. ~H -> ( ( ( projh ` H ) o. ( projh ` G ) ) ` x ) e. ~H ) |
31 |
1
|
pjhcli |
|- ( x e. ~H -> ( ( projh ` G ) ` x ) e. ~H ) |
32 |
|
hial2eq |
|- ( ( ( ( ( projh ` H ) o. ( projh ` G ) ) ` x ) e. ~H /\ ( ( projh ` G ) ` x ) e. ~H ) -> ( A. y e. ~H ( ( ( ( projh ` H ) o. ( projh ` G ) ) ` x ) .ih y ) = ( ( ( projh ` G ) ` x ) .ih y ) <-> ( ( ( projh ` H ) o. ( projh ` G ) ) ` x ) = ( ( projh ` G ) ` x ) ) ) |
33 |
30 31 32
|
syl2anc |
|- ( x e. ~H -> ( A. y e. ~H ( ( ( ( projh ` H ) o. ( projh ` G ) ) ` x ) .ih y ) = ( ( ( projh ` G ) ` x ) .ih y ) <-> ( ( ( projh ` H ) o. ( projh ` G ) ) ` x ) = ( ( projh ` G ) ` x ) ) ) |
34 |
29 33
|
sylibd |
|- ( x e. ~H -> ( ( ( projh ` G ) o. ( projh ` H ) ) = ( projh ` G ) -> ( ( ( projh ` H ) o. ( projh ` G ) ) ` x ) = ( ( projh ` G ) ` x ) ) ) |
35 |
34
|
com12 |
|- ( ( ( projh ` G ) o. ( projh ` H ) ) = ( projh ` G ) -> ( x e. ~H -> ( ( ( projh ` H ) o. ( projh ` G ) ) ` x ) = ( ( projh ` G ) ` x ) ) ) |
36 |
35
|
ralrimiv |
|- ( ( ( projh ` G ) o. ( projh ` H ) ) = ( projh ` G ) -> A. x e. ~H ( ( ( projh ` H ) o. ( projh ` G ) ) ` x ) = ( ( projh ` G ) ` x ) ) |
37 |
16 15
|
hocofi |
|- ( ( projh ` H ) o. ( projh ` G ) ) : ~H --> ~H |
38 |
37 15
|
hoeqi |
|- ( A. x e. ~H ( ( ( projh ` H ) o. ( projh ` G ) ) ` x ) = ( ( projh ` G ) ` x ) <-> ( ( projh ` H ) o. ( projh ` G ) ) = ( projh ` G ) ) |
39 |
36 38
|
sylib |
|- ( ( ( projh ` G ) o. ( projh ` H ) ) = ( projh ` G ) -> ( ( projh ` H ) o. ( projh ` G ) ) = ( projh ` G ) ) |
40 |
1 2
|
pjss1coi |
|- ( G C_ H <-> ( ( projh ` H ) o. ( projh ` G ) ) = ( projh ` G ) ) |
41 |
39 40
|
sylibr |
|- ( ( ( projh ` G ) o. ( projh ` H ) ) = ( projh ` G ) -> G C_ H ) |
42 |
19 41
|
impbii |
|- ( G C_ H <-> ( ( projh ` G ) o. ( projh ` H ) ) = ( projh ` G ) ) |