Metamath Proof Explorer


Theorem pjcohocli

Description: Closure of composition of projection and Hilbert space operator. (Contributed by NM, 3-Dec-2000) (New usage is discouraged.)

Ref Expression
Hypotheses pjcohocl.1
|- H e. CH
pjcohocl.2
|- T : ~H --> ~H
Assertion pjcohocli
|- ( A e. ~H -> ( ( ( projh ` H ) o. T ) ` A ) e. H )

Proof

Step Hyp Ref Expression
1 pjcohocl.1
 |-  H e. CH
2 pjcohocl.2
 |-  T : ~H --> ~H
3 1 pjfi
 |-  ( projh ` H ) : ~H --> ~H
4 3 2 hocoi
 |-  ( A e. ~H -> ( ( ( projh ` H ) o. T ) ` A ) = ( ( projh ` H ) ` ( T ` A ) ) )
5 2 ffvelrni
 |-  ( A e. ~H -> ( T ` A ) e. ~H )
6 1 pjcli
 |-  ( ( T ` A ) e. ~H -> ( ( projh ` H ) ` ( T ` A ) ) e. H )
7 5 6 syl
 |-  ( A e. ~H -> ( ( projh ` H ) ` ( T ` A ) ) e. H )
8 4 7 eqeltrd
 |-  ( A e. ~H -> ( ( ( projh ` H ) o. T ) ` A ) e. H )