Metamath Proof Explorer


Theorem pjcohocli

Description: Closure of composition of projection and Hilbert space operator. (Contributed by NM, 3-Dec-2000) (New usage is discouraged.)

Ref Expression
Hypotheses pjcohocl.1 𝐻C
pjcohocl.2 𝑇 : ℋ ⟶ ℋ
Assertion pjcohocli ( 𝐴 ∈ ℋ → ( ( ( proj𝐻 ) ∘ 𝑇 ) ‘ 𝐴 ) ∈ 𝐻 )

Proof

Step Hyp Ref Expression
1 pjcohocl.1 𝐻C
2 pjcohocl.2 𝑇 : ℋ ⟶ ℋ
3 1 pjfi ( proj𝐻 ) : ℋ ⟶ ℋ
4 3 2 hocoi ( 𝐴 ∈ ℋ → ( ( ( proj𝐻 ) ∘ 𝑇 ) ‘ 𝐴 ) = ( ( proj𝐻 ) ‘ ( 𝑇𝐴 ) ) )
5 2 ffvelrni ( 𝐴 ∈ ℋ → ( 𝑇𝐴 ) ∈ ℋ )
6 1 pjcli ( ( 𝑇𝐴 ) ∈ ℋ → ( ( proj𝐻 ) ‘ ( 𝑇𝐴 ) ) ∈ 𝐻 )
7 5 6 syl ( 𝐴 ∈ ℋ → ( ( proj𝐻 ) ‘ ( 𝑇𝐴 ) ) ∈ 𝐻 )
8 4 7 eqeltrd ( 𝐴 ∈ ℋ → ( ( ( proj𝐻 ) ∘ 𝑇 ) ‘ 𝐴 ) ∈ 𝐻 )