Description: Closure of composition of projection and Hilbert space operator. (Contributed by NM, 3-Dec-2000) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | pjcohocl.1 | ⊢ 𝐻 ∈ Cℋ | |
pjcohocl.2 | ⊢ 𝑇 : ℋ ⟶ ℋ | ||
Assertion | pjcohocli | ⊢ ( 𝐴 ∈ ℋ → ( ( ( projℎ ‘ 𝐻 ) ∘ 𝑇 ) ‘ 𝐴 ) ∈ 𝐻 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pjcohocl.1 | ⊢ 𝐻 ∈ Cℋ | |
2 | pjcohocl.2 | ⊢ 𝑇 : ℋ ⟶ ℋ | |
3 | 1 | pjfi | ⊢ ( projℎ ‘ 𝐻 ) : ℋ ⟶ ℋ |
4 | 3 2 | hocoi | ⊢ ( 𝐴 ∈ ℋ → ( ( ( projℎ ‘ 𝐻 ) ∘ 𝑇 ) ‘ 𝐴 ) = ( ( projℎ ‘ 𝐻 ) ‘ ( 𝑇 ‘ 𝐴 ) ) ) |
5 | 2 | ffvelrni | ⊢ ( 𝐴 ∈ ℋ → ( 𝑇 ‘ 𝐴 ) ∈ ℋ ) |
6 | 1 | pjcli | ⊢ ( ( 𝑇 ‘ 𝐴 ) ∈ ℋ → ( ( projℎ ‘ 𝐻 ) ‘ ( 𝑇 ‘ 𝐴 ) ) ∈ 𝐻 ) |
7 | 5 6 | syl | ⊢ ( 𝐴 ∈ ℋ → ( ( projℎ ‘ 𝐻 ) ‘ ( 𝑇 ‘ 𝐴 ) ) ∈ 𝐻 ) |
8 | 4 7 | eqeltrd | ⊢ ( 𝐴 ∈ ℋ → ( ( ( projℎ ‘ 𝐻 ) ∘ 𝑇 ) ‘ 𝐴 ) ∈ 𝐻 ) |