Metamath Proof Explorer


Theorem pjadj2coi

Description: Adjoint of double composition of projections. Generalization of special case of Theorem 3.11(viii) of Beran p. 106. (Contributed by NM, 1-Dec-2000) (New usage is discouraged.)

Ref Expression
Hypotheses pjadj2co.1 𝐹C
pjadj2co.2 𝐺C
pjadj2co.3 𝐻C
Assertion pjadj2coi ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( ( ( ( proj𝐹 ) ∘ ( proj𝐺 ) ) ∘ ( proj𝐻 ) ) ‘ 𝐴 ) ·ih 𝐵 ) = ( 𝐴 ·ih ( ( ( ( proj𝐻 ) ∘ ( proj𝐺 ) ) ∘ ( proj𝐹 ) ) ‘ 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 pjadj2co.1 𝐹C
2 pjadj2co.2 𝐺C
3 pjadj2co.3 𝐻C
4 3 pjhcli ( 𝐴 ∈ ℋ → ( ( proj𝐻 ) ‘ 𝐴 ) ∈ ℋ )
5 1 2 pjadjcoi ( ( ( ( proj𝐻 ) ‘ 𝐴 ) ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( ( ( proj𝐹 ) ∘ ( proj𝐺 ) ) ‘ ( ( proj𝐻 ) ‘ 𝐴 ) ) ·ih 𝐵 ) = ( ( ( proj𝐻 ) ‘ 𝐴 ) ·ih ( ( ( proj𝐺 ) ∘ ( proj𝐹 ) ) ‘ 𝐵 ) ) )
6 4 5 sylan ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( ( ( proj𝐹 ) ∘ ( proj𝐺 ) ) ‘ ( ( proj𝐻 ) ‘ 𝐴 ) ) ·ih 𝐵 ) = ( ( ( proj𝐻 ) ‘ 𝐴 ) ·ih ( ( ( proj𝐺 ) ∘ ( proj𝐹 ) ) ‘ 𝐵 ) ) )
7 2 1 pjcohcli ( 𝐵 ∈ ℋ → ( ( ( proj𝐺 ) ∘ ( proj𝐹 ) ) ‘ 𝐵 ) ∈ ℋ )
8 3 pjadji ( ( 𝐴 ∈ ℋ ∧ ( ( ( proj𝐺 ) ∘ ( proj𝐹 ) ) ‘ 𝐵 ) ∈ ℋ ) → ( ( ( proj𝐻 ) ‘ 𝐴 ) ·ih ( ( ( proj𝐺 ) ∘ ( proj𝐹 ) ) ‘ 𝐵 ) ) = ( 𝐴 ·ih ( ( proj𝐻 ) ‘ ( ( ( proj𝐺 ) ∘ ( proj𝐹 ) ) ‘ 𝐵 ) ) ) )
9 7 8 sylan2 ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( ( proj𝐻 ) ‘ 𝐴 ) ·ih ( ( ( proj𝐺 ) ∘ ( proj𝐹 ) ) ‘ 𝐵 ) ) = ( 𝐴 ·ih ( ( proj𝐻 ) ‘ ( ( ( proj𝐺 ) ∘ ( proj𝐹 ) ) ‘ 𝐵 ) ) ) )
10 6 9 eqtrd ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( ( ( proj𝐹 ) ∘ ( proj𝐺 ) ) ‘ ( ( proj𝐻 ) ‘ 𝐴 ) ) ·ih 𝐵 ) = ( 𝐴 ·ih ( ( proj𝐻 ) ‘ ( ( ( proj𝐺 ) ∘ ( proj𝐹 ) ) ‘ 𝐵 ) ) ) )
11 1 pjfi ( proj𝐹 ) : ℋ ⟶ ℋ
12 2 pjfi ( proj𝐺 ) : ℋ ⟶ ℋ
13 11 12 hocofi ( ( proj𝐹 ) ∘ ( proj𝐺 ) ) : ℋ ⟶ ℋ
14 3 pjfi ( proj𝐻 ) : ℋ ⟶ ℋ
15 13 14 hocoi ( 𝐴 ∈ ℋ → ( ( ( ( proj𝐹 ) ∘ ( proj𝐺 ) ) ∘ ( proj𝐻 ) ) ‘ 𝐴 ) = ( ( ( proj𝐹 ) ∘ ( proj𝐺 ) ) ‘ ( ( proj𝐻 ) ‘ 𝐴 ) ) )
16 15 oveq1d ( 𝐴 ∈ ℋ → ( ( ( ( ( proj𝐹 ) ∘ ( proj𝐺 ) ) ∘ ( proj𝐻 ) ) ‘ 𝐴 ) ·ih 𝐵 ) = ( ( ( ( proj𝐹 ) ∘ ( proj𝐺 ) ) ‘ ( ( proj𝐻 ) ‘ 𝐴 ) ) ·ih 𝐵 ) )
17 16 adantr ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( ( ( ( proj𝐹 ) ∘ ( proj𝐺 ) ) ∘ ( proj𝐻 ) ) ‘ 𝐴 ) ·ih 𝐵 ) = ( ( ( ( proj𝐹 ) ∘ ( proj𝐺 ) ) ‘ ( ( proj𝐻 ) ‘ 𝐴 ) ) ·ih 𝐵 ) )
18 coass ( ( ( proj𝐻 ) ∘ ( proj𝐺 ) ) ∘ ( proj𝐹 ) ) = ( ( proj𝐻 ) ∘ ( ( proj𝐺 ) ∘ ( proj𝐹 ) ) )
19 18 fveq1i ( ( ( ( proj𝐻 ) ∘ ( proj𝐺 ) ) ∘ ( proj𝐹 ) ) ‘ 𝐵 ) = ( ( ( proj𝐻 ) ∘ ( ( proj𝐺 ) ∘ ( proj𝐹 ) ) ) ‘ 𝐵 )
20 12 11 hocofi ( ( proj𝐺 ) ∘ ( proj𝐹 ) ) : ℋ ⟶ ℋ
21 14 20 hocoi ( 𝐵 ∈ ℋ → ( ( ( proj𝐻 ) ∘ ( ( proj𝐺 ) ∘ ( proj𝐹 ) ) ) ‘ 𝐵 ) = ( ( proj𝐻 ) ‘ ( ( ( proj𝐺 ) ∘ ( proj𝐹 ) ) ‘ 𝐵 ) ) )
22 19 21 syl5eq ( 𝐵 ∈ ℋ → ( ( ( ( proj𝐻 ) ∘ ( proj𝐺 ) ) ∘ ( proj𝐹 ) ) ‘ 𝐵 ) = ( ( proj𝐻 ) ‘ ( ( ( proj𝐺 ) ∘ ( proj𝐹 ) ) ‘ 𝐵 ) ) )
23 22 oveq2d ( 𝐵 ∈ ℋ → ( 𝐴 ·ih ( ( ( ( proj𝐻 ) ∘ ( proj𝐺 ) ) ∘ ( proj𝐹 ) ) ‘ 𝐵 ) ) = ( 𝐴 ·ih ( ( proj𝐻 ) ‘ ( ( ( proj𝐺 ) ∘ ( proj𝐹 ) ) ‘ 𝐵 ) ) ) )
24 23 adantl ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 ·ih ( ( ( ( proj𝐻 ) ∘ ( proj𝐺 ) ) ∘ ( proj𝐹 ) ) ‘ 𝐵 ) ) = ( 𝐴 ·ih ( ( proj𝐻 ) ‘ ( ( ( proj𝐺 ) ∘ ( proj𝐹 ) ) ‘ 𝐵 ) ) ) )
25 10 17 24 3eqtr4d ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( ( ( ( proj𝐹 ) ∘ ( proj𝐺 ) ) ∘ ( proj𝐻 ) ) ‘ 𝐴 ) ·ih 𝐵 ) = ( 𝐴 ·ih ( ( ( ( proj𝐻 ) ∘ ( proj𝐺 ) ) ∘ ( proj𝐹 ) ) ‘ 𝐵 ) ) )