Step |
Hyp |
Ref |
Expression |
1 |
|
pjadj2co.1 |
⊢ 𝐹 ∈ Cℋ |
2 |
|
pjadj2co.2 |
⊢ 𝐺 ∈ Cℋ |
3 |
|
pjadj2co.3 |
⊢ 𝐻 ∈ Cℋ |
4 |
3
|
pjhcli |
⊢ ( 𝐴 ∈ ℋ → ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ∈ ℋ ) |
5 |
1 2
|
pjadjcoi |
⊢ ( ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ·ih 𝐵 ) = ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ·ih ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐹 ) ) ‘ 𝐵 ) ) ) |
6 |
4 5
|
sylan |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ·ih 𝐵 ) = ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ·ih ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐹 ) ) ‘ 𝐵 ) ) ) |
7 |
2 1
|
pjcohcli |
⊢ ( 𝐵 ∈ ℋ → ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐹 ) ) ‘ 𝐵 ) ∈ ℋ ) |
8 |
3
|
pjadji |
⊢ ( ( 𝐴 ∈ ℋ ∧ ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐹 ) ) ‘ 𝐵 ) ∈ ℋ ) → ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ·ih ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐹 ) ) ‘ 𝐵 ) ) = ( 𝐴 ·ih ( ( projℎ ‘ 𝐻 ) ‘ ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐹 ) ) ‘ 𝐵 ) ) ) ) |
9 |
7 8
|
sylan2 |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ·ih ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐹 ) ) ‘ 𝐵 ) ) = ( 𝐴 ·ih ( ( projℎ ‘ 𝐻 ) ‘ ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐹 ) ) ‘ 𝐵 ) ) ) ) |
10 |
6 9
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ·ih 𝐵 ) = ( 𝐴 ·ih ( ( projℎ ‘ 𝐻 ) ‘ ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐹 ) ) ‘ 𝐵 ) ) ) ) |
11 |
1
|
pjfi |
⊢ ( projℎ ‘ 𝐹 ) : ℋ ⟶ ℋ |
12 |
2
|
pjfi |
⊢ ( projℎ ‘ 𝐺 ) : ℋ ⟶ ℋ |
13 |
11 12
|
hocofi |
⊢ ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) : ℋ ⟶ ℋ |
14 |
3
|
pjfi |
⊢ ( projℎ ‘ 𝐻 ) : ℋ ⟶ ℋ |
15 |
13 14
|
hocoi |
⊢ ( 𝐴 ∈ ℋ → ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝐴 ) = ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) |
16 |
15
|
oveq1d |
⊢ ( 𝐴 ∈ ℋ → ( ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝐴 ) ·ih 𝐵 ) = ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ·ih 𝐵 ) ) |
17 |
16
|
adantr |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝐴 ) ·ih 𝐵 ) = ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ·ih 𝐵 ) ) |
18 |
|
coass |
⊢ ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐹 ) ) = ( ( projℎ ‘ 𝐻 ) ∘ ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐹 ) ) ) |
19 |
18
|
fveq1i |
⊢ ( ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐹 ) ) ‘ 𝐵 ) = ( ( ( projℎ ‘ 𝐻 ) ∘ ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐹 ) ) ) ‘ 𝐵 ) |
20 |
12 11
|
hocofi |
⊢ ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐹 ) ) : ℋ ⟶ ℋ |
21 |
14 20
|
hocoi |
⊢ ( 𝐵 ∈ ℋ → ( ( ( projℎ ‘ 𝐻 ) ∘ ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐹 ) ) ) ‘ 𝐵 ) = ( ( projℎ ‘ 𝐻 ) ‘ ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐹 ) ) ‘ 𝐵 ) ) ) |
22 |
19 21
|
eqtrid |
⊢ ( 𝐵 ∈ ℋ → ( ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐹 ) ) ‘ 𝐵 ) = ( ( projℎ ‘ 𝐻 ) ‘ ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐹 ) ) ‘ 𝐵 ) ) ) |
23 |
22
|
oveq2d |
⊢ ( 𝐵 ∈ ℋ → ( 𝐴 ·ih ( ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐹 ) ) ‘ 𝐵 ) ) = ( 𝐴 ·ih ( ( projℎ ‘ 𝐻 ) ‘ ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐹 ) ) ‘ 𝐵 ) ) ) ) |
24 |
23
|
adantl |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 ·ih ( ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐹 ) ) ‘ 𝐵 ) ) = ( 𝐴 ·ih ( ( projℎ ‘ 𝐻 ) ‘ ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐹 ) ) ‘ 𝐵 ) ) ) ) |
25 |
10 17 24
|
3eqtr4d |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝐴 ) ·ih 𝐵 ) = ( 𝐴 ·ih ( ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐹 ) ) ‘ 𝐵 ) ) ) |