Metamath Proof Explorer


Theorem pj2cocli

Description: Closure of double composition of projections. (Contributed by NM, 2-Dec-2000) (New usage is discouraged.)

Ref Expression
Hypotheses pjadj2co.1 𝐹C
pjadj2co.2 𝐺C
pjadj2co.3 𝐻C
Assertion pj2cocli ( 𝐴 ∈ ℋ → ( ( ( ( proj𝐹 ) ∘ ( proj𝐺 ) ) ∘ ( proj𝐻 ) ) ‘ 𝐴 ) ∈ 𝐹 )

Proof

Step Hyp Ref Expression
1 pjadj2co.1 𝐹C
2 pjadj2co.2 𝐺C
3 pjadj2co.3 𝐻C
4 1 pjfi ( proj𝐹 ) : ℋ ⟶ ℋ
5 2 pjfi ( proj𝐺 ) : ℋ ⟶ ℋ
6 3 pjfi ( proj𝐻 ) : ℋ ⟶ ℋ
7 4 5 6 ho2coi ( 𝐴 ∈ ℋ → ( ( ( ( proj𝐹 ) ∘ ( proj𝐺 ) ) ∘ ( proj𝐻 ) ) ‘ 𝐴 ) = ( ( proj𝐹 ) ‘ ( ( proj𝐺 ) ‘ ( ( proj𝐻 ) ‘ 𝐴 ) ) ) )
8 3 pjhcli ( 𝐴 ∈ ℋ → ( ( proj𝐻 ) ‘ 𝐴 ) ∈ ℋ )
9 2 pjhcli ( ( ( proj𝐻 ) ‘ 𝐴 ) ∈ ℋ → ( ( proj𝐺 ) ‘ ( ( proj𝐻 ) ‘ 𝐴 ) ) ∈ ℋ )
10 1 pjcli ( ( ( proj𝐺 ) ‘ ( ( proj𝐻 ) ‘ 𝐴 ) ) ∈ ℋ → ( ( proj𝐹 ) ‘ ( ( proj𝐺 ) ‘ ( ( proj𝐻 ) ‘ 𝐴 ) ) ) ∈ 𝐹 )
11 8 9 10 3syl ( 𝐴 ∈ ℋ → ( ( proj𝐹 ) ‘ ( ( proj𝐺 ) ‘ ( ( proj𝐻 ) ‘ 𝐴 ) ) ) ∈ 𝐹 )
12 7 11 eqeltrd ( 𝐴 ∈ ℋ → ( ( ( ( proj𝐹 ) ∘ ( proj𝐺 ) ) ∘ ( proj𝐻 ) ) ‘ 𝐴 ) ∈ 𝐹 )