Step |
Hyp |
Ref |
Expression |
1 |
|
pjadj2co.1 |
⊢ 𝐹 ∈ Cℋ |
2 |
|
pjadj2co.2 |
⊢ 𝐺 ∈ Cℋ |
3 |
|
pjadj2co.3 |
⊢ 𝐻 ∈ Cℋ |
4 |
1
|
pjfi |
⊢ ( projℎ ‘ 𝐹 ) : ℋ ⟶ ℋ |
5 |
2
|
pjfi |
⊢ ( projℎ ‘ 𝐺 ) : ℋ ⟶ ℋ |
6 |
3
|
pjfi |
⊢ ( projℎ ‘ 𝐻 ) : ℋ ⟶ ℋ |
7 |
4 5 6
|
ho2coi |
⊢ ( 𝐴 ∈ ℋ → ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝐴 ) = ( ( projℎ ‘ 𝐹 ) ‘ ( ( projℎ ‘ 𝐺 ) ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) ) |
8 |
3
|
pjhcli |
⊢ ( 𝐴 ∈ ℋ → ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ∈ ℋ ) |
9 |
2
|
pjhcli |
⊢ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ∈ ℋ → ( ( projℎ ‘ 𝐺 ) ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ∈ ℋ ) |
10 |
1
|
pjcli |
⊢ ( ( ( projℎ ‘ 𝐺 ) ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ∈ ℋ → ( ( projℎ ‘ 𝐹 ) ‘ ( ( projℎ ‘ 𝐺 ) ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) ∈ 𝐹 ) |
11 |
8 9 10
|
3syl |
⊢ ( 𝐴 ∈ ℋ → ( ( projℎ ‘ 𝐹 ) ‘ ( ( projℎ ‘ 𝐺 ) ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) ∈ 𝐹 ) |
12 |
7 11
|
eqeltrd |
⊢ ( 𝐴 ∈ ℋ → ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝐴 ) ∈ 𝐹 ) |