Step |
Hyp |
Ref |
Expression |
1 |
|
pjadj2co.1 |
|- F e. CH |
2 |
|
pjadj2co.2 |
|- G e. CH |
3 |
|
pjadj2co.3 |
|- H e. CH |
4 |
1
|
pjfi |
|- ( projh ` F ) : ~H --> ~H |
5 |
2
|
pjfi |
|- ( projh ` G ) : ~H --> ~H |
6 |
3
|
pjfi |
|- ( projh ` H ) : ~H --> ~H |
7 |
4 5 6
|
ho2coi |
|- ( A e. ~H -> ( ( ( ( projh ` F ) o. ( projh ` G ) ) o. ( projh ` H ) ) ` A ) = ( ( projh ` F ) ` ( ( projh ` G ) ` ( ( projh ` H ) ` A ) ) ) ) |
8 |
3
|
pjhcli |
|- ( A e. ~H -> ( ( projh ` H ) ` A ) e. ~H ) |
9 |
2
|
pjhcli |
|- ( ( ( projh ` H ) ` A ) e. ~H -> ( ( projh ` G ) ` ( ( projh ` H ) ` A ) ) e. ~H ) |
10 |
1
|
pjcli |
|- ( ( ( projh ` G ) ` ( ( projh ` H ) ` A ) ) e. ~H -> ( ( projh ` F ) ` ( ( projh ` G ) ` ( ( projh ` H ) ` A ) ) ) e. F ) |
11 |
8 9 10
|
3syl |
|- ( A e. ~H -> ( ( projh ` F ) ` ( ( projh ` G ) ` ( ( projh ` H ) ` A ) ) ) e. F ) |
12 |
7 11
|
eqeltrd |
|- ( A e. ~H -> ( ( ( ( projh ` F ) o. ( projh ` G ) ) o. ( projh ` H ) ) ` A ) e. F ) |